These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34063449)

  • 21. Nano-Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles.
    Kolbow JD; Lindquist NC; Ertsgaard CT; Yoo D; Oh SH
    Chemphyschem; 2021 Jul; 22(14):1409-1420. PubMed ID: 33797179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution.
    Burnham DR; Schneider T; Chiu DT
    Proc SPIE Int Soc Opt Eng; 2010 Aug; 7762():77621T. PubMed ID: 24465114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Holographic optical trapping.
    Grier DG; Roichman Y
    Appl Opt; 2006 Feb; 45(5):880-7. PubMed ID: 16512529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration.
    Hanes RD; Jenkins MC; Egelhaaf SU
    Rev Sci Instrum; 2009 Aug; 80(8):083703. PubMed ID: 19725658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor.
    López-Quesada C; Andilla J; Martín-Badosa E
    Appl Opt; 2009 Feb; 48(6):1084-90. PubMed ID: 23567567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subwavelength direct-write nanopatterning using optically trapped microspheres.
    McLeod E; Arnold CB
    Nat Nanotechnol; 2008 Jul; 3(7):413-7. PubMed ID: 18654565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling ghost traps in holographic optical tweezers.
    Hesseling C; Woerdemann M; Hermerschmidt A; Denz C
    Opt Lett; 2011 Sep; 36(18):3657-9. PubMed ID: 21931423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aberration correction in holographic optical tweezers using a high-order optical vortex.
    Liang Y; Cai Y; Wang Z; Lei M; Cao Z; Wang Y; Li M; Yan S; Bianco PR; Yao B
    Appl Opt; 2018 May; 57(13):3618-3623. PubMed ID: 29726541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer Generated Holography with Intensity-Graded Patterns.
    Conti R; Assayag O; de Sars V; Guillon M; Emiliani V
    Front Cell Neurosci; 2016; 10():236. PubMed ID: 27799896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing trap stiffness with position clamping in holographic optical tweezers.
    Preece D; Bowman R; Linnenberger A; Gibson G; Serati S; Padgett M
    Opt Express; 2009 Dec; 17(25):22718-25. PubMed ID: 20052197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction.
    Takekawa Y; Takashima Y; Takaki Y
    Opt Express; 2020 Mar; 28(5):7392-7407. PubMed ID: 32225969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calibration of spatial light modulators suffering from spatially varying phase response.
    Engström D; Persson M; Bengtsson J; Goksör M
    Opt Express; 2013 Jul; 21(13):16086-103. PubMed ID: 23842396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dexterous holographic trapping of dark-seeking particles with Zernike holograms.
    Abacousnac J; Grier DG
    Opt Express; 2022 Jun; 30(13):23568-23578. PubMed ID: 36225033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential detection of dual traps improves the spatial resolution of optical tweezers.
    Moffitt JR; Chemla YR; Izhaky D; Bustamante C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9006-11. PubMed ID: 16751267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.
    Tietjen GT; Kong Y; Parthasarathy R
    Opt Express; 2008 Jul; 16(14):10341-8. PubMed ID: 18607444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reference-free in situ rapid regional calibration of phase-only spatial light modulators.
    Nam K; Park JH
    Opt Lett; 2024 Feb; 49(3):522-525. PubMed ID: 38300049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-chip multi-trap optical tweezers based on a guided wave-driven metalens.
    Yu G; Guo J; Shi J; Mao X; Ding H; Zheng H; Shen C
    Opt Lett; 2024 Mar; 49(5):1225-1228. PubMed ID: 38426979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D interferometric optical tweezers using a single spatial light modulator.
    Schonbrun E; Piestun R; Jordan P; Cooper J; Wulff K; Courtial J; Padgett M
    Opt Express; 2005 May; 13(10):3777-86. PubMed ID: 19495284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.