These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 34063491)

  • 1. Development of Phosphodiesterase-Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity.
    Tulsian NK; Sin VJ; Koh HL; Anand GS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34063491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic nucleotide phosphodiesterase (PDE) inhibitors: novel therapeutic agents for progressive renal disease.
    Cheng J; Grande JP
    Exp Biol Med (Maywood); 2007 Jan; 232(1):38-51. PubMed ID: 17202584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphodiesterase and protein kinase G on nitric oxide-induced inhibition of prolactin release from the rat anterior pituitary.
    Velardez MO; De Laurentiis A; del Carmen Díaz M; Lasaga M; Pisera D; Seilicovich A; Duvilanski BH
    Eur J Endocrinol; 2000 Aug; 143(2):279-84. PubMed ID: 10913949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channeling of cAMP in PDE-PKA Complexes Promotes Signal Adaptation.
    Tulsian NK; Krishnamurthy S; Anand GS
    Biophys J; 2017 Jun; 112(12):2552-2566. PubMed ID: 28636912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cyclic nucleotide phosphodiesterases: therapeutic targets in cardiac hypertrophy and failure].
    Barthou A; Kamel R; Leroy J; Vandecasteele G; Fischmeister R
    Med Sci (Paris); 2024; 40(6-7):534-543. PubMed ID: 38986098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity.
    Brescia M; Zaccolo M
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27706091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes.
    Keravis T; Komas N; Lugnier C
    J Vasc Res; 2000; 37(4):235-49. PubMed ID: 10965223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in targeting cyclic nucleotide phosphodiesterases.
    Maurice DH; Ke H; Ahmad F; Wang Y; Chung J; Manganiello VC
    Nat Rev Drug Discov; 2014 Apr; 13(4):290-314. PubMed ID: 24687066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells.
    Zhang L; Bouadjel K; Manoury B; Vandecasteele G; Fischmeister R; Leblais V
    Br J Pharmacol; 2019 Jun; 176(11):1780-1792. PubMed ID: 30825186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease.
    Xi M; Sun T; Chai S; Xie M; Chen S; Deng L; Du K; Shen R; Sun H
    Eur J Med Chem; 2022 Mar; 232():114170. PubMed ID: 35144038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus.
    Suvarna NU; O'Donnell JM
    J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex.
    Sutor B; Mantell K; Bacher B
    Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases.
    Guo L; Luo L; Ju R; Chen C; Zhu L; Li J; Yu X; Ye C; Zhang D
    Eur J Pharmacol; 2015 Jan; 746():14-21. PubMed ID: 25446933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2016 Feb; 91():215-27. PubMed ID: 26773602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of PDE modulation in treating heart disease.
    Knight W; Yan C
    Future Med Chem; 2013 Sep; 5(14):1607-20. PubMed ID: 24047267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review.
    Yasmeen S; Akram BH; Hainsworth AH; Kruuse C
    Cell Signal; 2019 Sep; 61():108-119. PubMed ID: 31132399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE; Lugnier C
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.