BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34063541)

  • 1. Modulation of Photorespiratory Enzymes by Oxidative and Photo-Oxidative Stress Induced by Menadione in Leaves of Pea (
    Bapatla RB; Saini D; Aswani V; Rajsheel P; Sunil B; Timm S; Raghavendra AS
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34063541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderate modulation by S-nitrosoglutathione of photorespiratory enzymes in pea (Pisum sativum) leaves, compared to the strong effects of high light.
    Saini D; Bapatla RB; Vemula CK; Gahir S; Bharath P; Gupta KJ; Raghavendra AS
    Protoplasma; 2024 Jan; 261(1):43-51. PubMed ID: 37421536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Photorespiratory Cycle Enzyme Activities in Leaves Exposed to Abiotic Stress.
    Saini D; Rao DE; Bapatla RB; Aswani V; Raghavendra AS
    Methods Mol Biol; 2024; 2832():145-161. PubMed ID: 38869793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions.
    Aswani V; Rajsheel P; Bapatla RB; Sunil B; Raghavendra AS
    Protoplasma; 2019 Mar; 256(2):449-457. PubMed ID: 30206687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of photorespiratory metabolism by low O
    Saini D; Bharath P; Gahir S; Raghavendra AS
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1851-1861. PubMed ID: 38222271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey of plants for leaf peroxisomes.
    Tolbert NE; Oeser A; Yamazaki RK; Hageman RH; Kisaki T
    Plant Physiol; 1969 Jan; 44(1):135-47. PubMed ID: 5775848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled--others remain.
    Reumann S; Weber AP
    Biochim Biophys Acta; 2006 Dec; 1763(12):1496-510. PubMed ID: 17046077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?
    Noctor G; Veljovic-Jovanovic S; Driscoll S; Novitskaya L; Foyer CH
    Ann Bot; 2002 Jun; 89 Spec No(7):841-50. PubMed ID: 12102510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging concept for the role of photorespiration as an important part of abiotic stress response.
    Voss I; Sunil B; Scheibe R; Raghavendra AS
    Plant Biol (Stuttg); 2013 Jul; 15(4):713-22. PubMed ID: 23452019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two plastidic glycolate/glycerate translocator 1 isoforms function together to transport photorespiratory glycolate and glycerate in rice chloroplasts.
    Cui L; Zhang C; Li Z; Xian T; Wang L; Zhang Z; Zhu G; Peng X
    J Exp Bot; 2021 Mar; 72(7):2584-2599. PubMed ID: 33483723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration and Plant Growth.
    Shim SH; Lee SK; Lee DW; Brilhaus D; Wu G; Ko S; Lee CH; Weber APM; Jeon JS
    Front Plant Sci; 2019; 10():1726. PubMed ID: 32038690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different photorespiratory mechanisms in conifer leaves, where peroxisomes have intrinsically low catalase activity.
    Miyazawa SI; Ujino-Ihara T; Miyama T; Tahara K; Tobita H; Suzuki Y; Nishiguchi M
    Plant J; 2023 Aug; 115(4):1004-1020. PubMed ID: 37162489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence.
    Sørhagen K; Laxa M; Peterhänsel C; Reumann S
    Plant Biol (Stuttg); 2013 Jul; 15(4):723-36. PubMed ID: 23506300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photorespiratory glycolate-glyoxylate metabolism.
    Dellero Y; Jossier M; Schmitz J; Maurino VG; Hodges M
    J Exp Bot; 2016 May; 67(10):3041-52. PubMed ID: 26994478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially.
    Sewelam N; Jaspert N; Van Der Kelen K; Tognetti VB; Schmitz J; Frerigmann H; Stahl E; Zeier J; Van Breusegem F; Maurino VG
    Mol Plant; 2014 Jul; 7(7):1191-210. PubMed ID: 24908268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photorespiration-how is it regulated and how does it regulate overall plant metabolism?
    Timm S; Hagemann M
    J Exp Bot; 2020 Jul; 71(14):3955-3965. PubMed ID: 32274517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The appropriate expression and coordination of glycolate oxidase and catalase are vital to the successful construction of the photorespiratory metabolic pathway.
    Yao Z; Rao Z; Hou S; Tian C; Liu CY; Yang X; Zhu G
    Front Plant Sci; 2022; 13():999757. PubMed ID: 36388585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular Location of NADPH-Dependent Hydroxypyruvate Reductase Activity in Leaf Protoplasts of Pisum sativum L. and Its Role in Photorespiratory Metabolism.
    Kleczkowski LA; Givan CV; Hodgson JM; Randall DD
    Plant Physiol; 1988 Dec; 88(4):1182-5. PubMed ID: 16666441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase.
    McClung CR; Hsu M; Painter JE; Gagne JM; Karlsberg SD; Salomé PA
    Plant Physiol; 2000 May; 123(1):381-92. PubMed ID: 10806255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana.
    Kebeish R; Niessen M; Thiruveedhi K; Bari R; Hirsch HJ; Rosenkranz R; Stäbler N; Schönfeld B; Kreuzaler F; Peterhänsel C
    Nat Biotechnol; 2007 May; 25(5):593-9. PubMed ID: 17435746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.