These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Kim Y; Jeong D; Shinde VV; Hu Y; Kim C; Jung S Int J Biol Macromol; 2020 Nov; 163():824-832. PubMed ID: 32653370 [TBL] [Abstract][Full Text] [Related]
3. A Light-Controlled Release System Based on Molecular Recognition of Cyclodextrins. Lee IE; Hashidzume A; Harada A Macromol Rapid Commun; 2015 Dec; 36(23):2055-9. PubMed ID: 26344702 [TBL] [Abstract][Full Text] [Related]
4. A triply-responsive supramolecular vesicle fabricated by α-cyclodextrin based host-guest recognition and double dynamic covalent bonds. Li S; Chu X; Hao A; Shang N; Wang C Soft Matter; 2018 Dec; 14(48):9923-9927. PubMed ID: 30484805 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of photochromic azobenzene cellulose ethers. Li Z; Zhang D; Weng J; Chen B; Liu H Carbohydr Polym; 2014 Jan; 99():748-54. PubMed ID: 24274566 [TBL] [Abstract][Full Text] [Related]
6. Dual Stimuli-Responsive Supramolecular Self-Assemblies Based on the Host-Guest Interaction between β-Cyclodextrin and Azobenzene for Cellular Drug Release. Zhang J; Zhou ZH; Li L; Luo YL; Xu F; Chen Y Mol Pharm; 2020 Apr; 17(4):1100-1113. PubMed ID: 32125862 [TBL] [Abstract][Full Text] [Related]
7. Light controlled protein release from a supramolecular hydrogel. Peng K; Tomatsu I; Kros A Chem Commun (Camb); 2010 Jun; 46(23):4094-6. PubMed ID: 20464018 [TBL] [Abstract][Full Text] [Related]
8. S-benzoxazolyl as a stable protecting moiety and a potent anomeric leaving group in oligosaccharide synthesis. Kamat MN; De Meo C; Demchenko AV J Org Chem; 2007 Aug; 72(18):6947-55. PubMed ID: 17676919 [TBL] [Abstract][Full Text] [Related]
9. Photoresponsive Conjugated Microporous Polymer Films Fabricated by Electrochemical Deposition for Controlled Release. Zhao R; Han J; Huang M; Liu F; Wang L; Ma Y Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28749018 [TBL] [Abstract][Full Text] [Related]
10. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. Chen G; Ma B; Xie R; Wang Y; Dou K; Gong S J Control Release; 2018 Jul; 282():148-155. PubMed ID: 29287907 [TBL] [Abstract][Full Text] [Related]
12. Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Mei X; Yang S; Chen D; Li N; Li H; Xu Q; Ge J; Lu J Chem Commun (Camb); 2012 Oct; 48(80):10010-2. PubMed ID: 22946093 [TBL] [Abstract][Full Text] [Related]
13. Smart hydrogels from laterally-grafted peptide assembly. Li W; Park IS; Kang SK; Lee M Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696 [TBL] [Abstract][Full Text] [Related]
14. Construction of stable polymeric vesicles based on azobenzene and beta-cyclodextrin grafted poly(glycerol methacrylate)s for potential applications in colon-specific drug delivery. Gu WX; Li QL; Lu H; Fang L; Chen Q; Yang YW; Gao H Chem Commun (Camb); 2015 Mar; 51(22):4715-8. PubMed ID: 25692460 [TBL] [Abstract][Full Text] [Related]
15. Red-Light-Responsive Supramolecular Valves for Photocontrolled Drug Release from Mesoporous Nanoparticles. Wang D; Wu S Langmuir; 2016 Jan; 32(2):632-6. PubMed ID: 26700509 [TBL] [Abstract][Full Text] [Related]
16. A novel single-side azobenzene-grafted Anderson-type polyoxometalate for recognition-induced chiral migration. Zhang B; Yue L; Wang Y; Yang Y; Wu L Chem Commun (Camb); 2014 Sep; 50(74):10823-6. PubMed ID: 25089807 [TBL] [Abstract][Full Text] [Related]
17. A visible light-activated azo-fluorescent switch for imaging-guided and light-controlled release of antimycotics. Huang Y; Zeng X; Ma X; Lin Z; Sun J; Xiao W; Liu SH; Yin J; Yang GF Nat Commun; 2024 Oct; 15(1):8670. PubMed ID: 39375340 [TBL] [Abstract][Full Text] [Related]
18. In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification. Kundu S; Lee MH; Lee SH; Kang SW Adv Mater; 2013 Jun; 25(24):3365-70. PubMed ID: 23666876 [TBL] [Abstract][Full Text] [Related]
19. Dual stimuli-responsive, rechargeable micropumps via "host-guest" interactions. Patra D; Zhang H; Sengupta S; Sen A ACS Nano; 2013 Sep; 7(9):7674-9. PubMed ID: 23947612 [TBL] [Abstract][Full Text] [Related]
20. Chiral power change upon photoisomerization in twisted nematic liquid crystals. Simoncelli S; Aramendía PF Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():94-100. PubMed ID: 25699698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]