These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants. Zemła M; Prociak A; Michałowski S; Cabulis U; Kirpluks M; Simakovs K Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293244 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus and nitrogen-containing soybean oil polyols: Effect on the mechanical properties and flame retardancy of polyurethane foam. Öztaşkin D; Yivlik LY; Acaroğlu Degitz İ; Eren T Turk J Chem; 2024; 48(2):237-250. PubMed ID: 39050506 [TBL] [Abstract][Full Text] [Related]
4. A Comprehensive Review of Reactive Flame Retardants for Polyurethane Materials: Current Development and Future Opportunities in an Environmentally Friendly Direction. Parcheta-Szwindowska P; Habaj J; Krzemińska I; Datta J Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791552 [TBL] [Abstract][Full Text] [Related]
5. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant. Wang S; Du X; Jiang Y; Xu J; Zhou M; Wang H; Cheng X; Du Z J Colloid Interface Sci; 2019 Mar; 537():197-205. PubMed ID: 30439616 [TBL] [Abstract][Full Text] [Related]
6. Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants. Zemła M; Prociak A; Michałowski S Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012126 [TBL] [Abstract][Full Text] [Related]
7. Flame Retardancy Behaviors of Flexible Polyurethane Foam Based on Reactive Dihydroxy P-N-containing Flame Retardants. Ding Y; Su Y; Huang J; Wang T; Li MY; Li W ACS Omega; 2021 Jun; 6(25):16410-16418. PubMed ID: 34235312 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Waterborne Polyurethane Using Phosphorus-Modified Rigid Polyol and its Physical Properties. Jang T; Kim HJ; Jang JB; Kim TH; Lee W; Seo B; Ko WB; Lim CS Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572930 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins. Zhang H; Xu M; Li B J Nanosci Nanotechnol; 2016 Mar; 16(3):2811-21. PubMed ID: 27455714 [TBL] [Abstract][Full Text] [Related]
10. Novel silicon-containing polyurethanes from vegetable oils as renewable resources. Synthesis and properties. Lligadas G; Ronda JC; Galià M; Cádiz V Biomacromolecules; 2006 Aug; 7(8):2420-6. PubMed ID: 16903691 [TBL] [Abstract][Full Text] [Related]
11. Construction of Charring-Functional Polyheptanazine towards Improvements in Flame Retardants of Polyurethane. Lu S; Shen B; Chen X Molecules; 2021 Jan; 26(2):. PubMed ID: 33440778 [TBL] [Abstract][Full Text] [Related]
12. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Kurańska M; Barczewski R; Barczewski M; Prociak A; Polaczek K Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322670 [TBL] [Abstract][Full Text] [Related]
13. Strategy for Constructing Phosphorus-Based Flame-Retarded Polyurethane Elastomers for Advanced Performance in Long-Term. Luo Y; Geng Z; Zhang W; He J; Yang R Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765565 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of the Action of Fire-Retardants on Reducing the Flammability of Certain Classes of Polymers and Glass-Reinforced Plastics Based on the Study of Their Combustion. Korobeinichev O; Shmakov A; Paletsky A; Trubachev S; Shaklein A; Karpov A; Sosnin E; Kostritsa S; Kumar A; Shvartsberg V Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365531 [TBL] [Abstract][Full Text] [Related]
15. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Rao WH; Liao W; Wang H; Zhao HB; Wang YZ J Hazard Mater; 2018 Oct; 360():651-660. PubMed ID: 30153630 [TBL] [Abstract][Full Text] [Related]
16. Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanes: The Effect of Its Content on Morphological and Physicochemical Properties. Ernzen JR; Covas JA; Marcos-Fernández A; Fiorio R; Bianchi O Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836059 [TBL] [Abstract][Full Text] [Related]
17. Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements. Zhi M; Liu Q; Chen H; Chen X; Feng S; He Y ACS Omega; 2019 Jun; 4(6):10975-10984. PubMed ID: 31460195 [TBL] [Abstract][Full Text] [Related]
18. Impact of Bark-Sourced Building Blocks as Substitutes for Fossil-Derived Polyols on the Structural, Thermal, and Mechanical Properties of Polyurethane Networks. Arshanitsa A; Ponomarenko J; Pals M; Jashina L; Lauberts M Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688129 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism. Yin S; Ren X; Lian P; Zhu Y; Mei Y Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32635235 [TBL] [Abstract][Full Text] [Related]
20. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]