These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 34063805)

  • 21. In Silico Analysis of FMR1 Gene Missense SNPs.
    Tekcan A
    Cell Biochem Biophys; 2016 Jun; 74(2):109-27. PubMed ID: 26880065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating the use of paralogous protein domains to increase data availability for missense variant classification.
    Gunning AC; Wright CF
    Genome Med; 2023 Dec; 15(1):110. PubMed ID: 38087376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of 13 in silico pathogenicity methods on cancer-related variants.
    Yazar M; Ozbek P
    Comput Biol Med; 2022 Jun; 145():105434. PubMed ID: 35364305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations.
    Prieto G; Fullaondo A; Rodríguez JA
    Sci Rep; 2016 May; 6():25869. PubMed ID: 27174732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BRCA1/2 missense mutations and the value of in-silico analyses.
    Sadowski CE; Kohlstedt D; Meisel C; Keller K; Becker K; Mackenroth L; Rump A; Schröck E; Wimberger P; Kast K
    Eur J Med Genet; 2017 Nov; 60(11):572-577. PubMed ID: 28807866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census.
    Malhotra S; Alsulami AF; Heiyun Y; Ochoa BM; Jubb H; Forbes S; Blundell TL
    PLoS One; 2019; 14(7):e0219935. PubMed ID: 31323058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the clinical interpretation of missense variants in X linked genes using structural analysis.
    Sallah SR; Ellingford JM; Sergouniotis PI; Ramsden SC; Lench N; Lovell SC; Black GC
    J Med Genet; 2022 Apr; 59(4):385-392. PubMed ID: 33766936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance evaluation of pathogenicity-computation methods for missense variants.
    Li J; Zhao T; Zhang Y; Zhang K; Shi L; Chen Y; Wang X; Sun Z
    Nucleic Acids Res; 2018 Sep; 46(15):7793-7804. PubMed ID: 30060008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting functional consequences of mutations using molecular interaction network features.
    Ozturk K; Carter H
    Hum Genet; 2022 Jun; 141(6):1195-1210. PubMed ID: 34432150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants.
    Vallée MP; Di Sera TL; Nix DA; Paquette AM; Parsons MT; Bell R; Hoffman A; Hogervorst FB; Goldgar DE; Spurdle AB; Tavtigian SV
    Hum Mutat; 2016 Jul; 37(7):627-39. PubMed ID: 26913838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational prediction and analysis of deleterious cancer associated missense mutations in DYNC1H1.
    Sucularli C; Arslantas M
    Mol Cell Probes; 2017 Aug; 34():21-29. PubMed ID: 28455235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MVP predicts the pathogenicity of missense variants by deep learning.
    Qi H; Zhang H; Zhao Y; Chen C; Long JJ; Chung WK; Guan Y; Shen Y
    Nat Commun; 2021 Jan; 12(1):510. PubMed ID: 33479230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of human frataxin missense variants in cancer tissues.
    Petrosino M; Pasquo A; Novak L; Toto A; Gianni S; Mantuano E; Veneziano L; Minicozzi V; Pastore A; Puglisi R; Capriotti E; Chiaraluce R; Consalvi V
    Hum Mutat; 2019 Sep; 40(9):1400-1413. PubMed ID: 31074541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Missense3D-DB web catalogue: an atom-based analysis and repository of 4M human protein-coding genetic variants.
    Khanna T; Hanna G; Sternberg MJE; David A
    Hum Genet; 2021 May; 140(5):805-812. PubMed ID: 33502607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches.
    Guidugli L; Shimelis H; Masica DL; Pankratz VS; Lipton GB; Singh N; Hu C; Monteiro ANA; Lindor NM; Goldgar DE; Karchin R; Iversen ES; Couch FJ
    Am J Hum Genet; 2018 Feb; 102(2):233-248. PubMed ID: 29394989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations.
    Wang B; Lei X; Tian W; Perez-Rathke A; Tseng YY; Liang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37332013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide prediction of disease variant effects with a deep protein language model.
    Brandes N; Goldman G; Wang CH; Ye CJ; Ntranos V
    Nat Genet; 2023 Sep; 55(9):1512-1522. PubMed ID: 37563329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.