These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 34063805)

  • 61. Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.
    Carraro M; Minervini G; Giollo M; Bromberg Y; Capriotti E; Casadio R; Dunbrack R; Elefanti L; Fariselli P; Ferrari C; Gough J; Katsonis P; Leonardi E; Lichtarge O; Menin C; Martelli PL; Niroula A; Pal LR; Repo S; Scaini MC; Vihinen M; Wei Q; Xu Q; Yang Y; Yin Y; Zaucha J; Zhao H; Zhou Y; Brenner SE; Moult J; Tosatto SCE
    Hum Mutat; 2017 Sep; 38(9):1042-1050. PubMed ID: 28440912
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comprehensive classification of TP53 somatic missense variants based on their impact on p53 structural stability.
    Tam B; Lagniton PNP; Da Luz M; Zhao B; Sinha S; Lei CL; Wang SM
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39140857
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia.
    Schiemann AH; Stowell KM
    Br J Anaesth; 2016 Jul; 117(1):124-8. PubMed ID: 27147545
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In silico analyses of missense mutations in coagulation factor VIII: identification of severity determinants of haemophilia A.
    Sengupta M; Sarkar D; Ganguly K; Sengupta D; Bhaskar S; Ray K
    Haemophilia; 2015 Sep; 21(5):662-9. PubMed ID: 25854144
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of pathogenicity predictors specific for variants that do not comply with clinical guidelines for the use of computational evidence.
    de la Campa EÁ; Padilla N; de la Cruz X
    BMC Genomics; 2017 Aug; 18(Suppl 5):569. PubMed ID: 28812538
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of predicted and actual consequences of missense mutations.
    Miosge LA; Field MA; Sontani Y; Cho V; Johnson S; Palkova A; Balakishnan B; Liang R; Zhang Y; Lyon S; Beutler B; Whittle B; Bertram EM; Enders A; Goodnow CC; Andrews TD
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5189-98. PubMed ID: 26269570
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In silico criterion for prediction of effects of p53 gene missense mutations on p53-Mdm2 feedback loop.
    Veljkovic N; Perovic V
    Protein Pept Lett; 2006; 13(8):807-14. PubMed ID: 17073727
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [In silico study of a functional mutation associated with non-small cell lung cancer: G12D mutation of exon 2 in KRAS gene].
    Bouras N; Bousahba A; Megaïz A; de Fraipont F; Sahraoui T; Kebir FZE
    Ann Biol Clin (Paris); 2019 Jun; 77(3):287-294. PubMed ID: 31021322
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mutation-Structure-Function Relationship Based Integrated Strategy Reveals the Potential Impact of Deleterious Missense Mutations in Autophagy Related Proteins on Hepatocellular Carcinoma (HCC): A Comprehensive Informatics Approach.
    Awan FM; Obaid A; Ikram A; Janjua HA
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28085066
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses.
    Medina-Carmona E; Betancor-Fernández I; Santos J; Mesa-Torres N; Grottelli S; Batlle C; Naganathan AN; Oppici E; Cellini B; Ventura S; Salido E; Pey AL
    Hum Mol Genet; 2019 Jan; 28(1):1-15. PubMed ID: 30215702
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures.
    Sivley RM; Dou X; Meiler J; Bush WS; Capra JA
    Am J Hum Genet; 2018 Mar; 102(3):415-426. PubMed ID: 29455857
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability.
    Sapozhnikov Y; Patel JS; Ytreberg FM; Miller CR
    BMC Bioinformatics; 2023 Nov; 24(1):426. PubMed ID: 37953256
    [TBL] [Abstract][Full Text] [Related]  

  • 73. MoBiDiC Prioritization Algorithm, a Free, Accessible, and Efficient Pipeline for Single-Nucleotide Variant Annotation and Prioritization for Next-Generation Sequencing Routine Molecular Diagnosis.
    Yauy K; Baux D; Pegeot H; Van Goethem C; Mathieu C; Guignard T; Juntas Morales R; Lacourt D; Krahn M; Lehtokari VL; Bonne G; Tuffery-Giraud S; Koenig M; Cossée M
    J Mol Diagn; 2018 Jul; 20(4):465-473. PubMed ID: 29689380
    [TBL] [Abstract][Full Text] [Related]  

  • 74. SNPeffect 5.0: large-scale structural phenotyping of protein coding variants extracted from next-generation sequencing data using AlphaFold models.
    Janssen K; Duran-Romaña R; Bottu G; Guharoy M; Botzki A; Rousseau F; Schymkowitz J
    BMC Bioinformatics; 2023 Jul; 24(1):287. PubMed ID: 37464277
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Evaluating the relevance of sequence conservation in the prediction of pathogenic missense variants.
    Capriotti E; Fariselli P
    Hum Genet; 2022 Oct; 141(10):1649-1658. PubMed ID: 35098354
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MISCAST: MIssense variant to protein StruCture Analysis web SuiTe.
    Iqbal S; Hoksza D; Pérez-Palma E; May P; Jespersen JB; Ahmed SS; Rifat ZT; Heyne HO; Rahman MS; Cottrell JR; Wagner FF; Daly MJ; Campbell AJ; Lal D
    Nucleic Acids Res; 2020 Jul; 48(W1):W132-W139. PubMed ID: 32402084
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhancing missense variant pathogenicity prediction with protein language models using VariPred.
    Lin W; Wells J; Wang Z; Orengo C; Martin ACR
    Sci Rep; 2024 Apr; 14(1):8136. PubMed ID: 38584172
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural bioinformatics survey on disease-inducing missense mutations.
    Bongini P; Gardini S; Bianchini M; Spiga O; Niccolai N
    J Bioinform Comput Biol; 2021 Jun; 19(3):2150008. PubMed ID: 33888033
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetic variant classification by predicted protein structure: A case study on IRF6.
    Murali H; Wang P; Liao EC; Wang K
    Comput Struct Biotechnol J; 2024 Dec; 23():892-904. PubMed ID: 38370976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.