These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 34063805)
81. Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Ollila S; Sarantaus L; Kariola R; Chan P; Hampel H; Holinski-Feder E; Macrae F; Kohonen-Corish M; Gerdes AM; Peltomäki P; Mangold E; de la Chapelle A; Greenblatt M; Nyström M Gastroenterology; 2006 Nov; 131(5):1408-17. PubMed ID: 17101317 [TBL] [Abstract][Full Text] [Related]
82. Cross-protein transfer learning substantially improves disease variant prediction. Jagota M; Ye C; Albors C; Rastogi R; Koehl A; Ioannidis N; Song YS Genome Biol; 2023 Aug; 24(1):182. PubMed ID: 37550700 [TBL] [Abstract][Full Text] [Related]
83. BRCA1/2 germline missense mutations: a systematic review. Corso G; Feroce I; Intra M; Toesca A; Magnoni F; Sargenti M; Naninato P; Caldarella P; Pagani G; Vento A; Veronesi P; Bonanni B; Galimberti V Eur J Cancer Prev; 2018 May; 27(3):279-286. PubMed ID: 28277317 [TBL] [Abstract][Full Text] [Related]
84. In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human Ali MZ; Farid A; Ahmad S; Muzammal M; Mohaini MA; Alsalman AJ; Al Hawaj MA; Alhashem YN; Alsaleh AA; Almusalami EM; Maryam M; Khan MA Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456478 [TBL] [Abstract][Full Text] [Related]
85. Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders. Han L; Chen M; Wang Y; Wu H; Quan Y; Bai T; Li K; Duan G; Gao Y; Hu Z; Xia K; Guo H Mol Genet Genomic Med; 2019 Jul; 7(7):e00789. PubMed ID: 31199603 [TBL] [Abstract][Full Text] [Related]
86. Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGI-5. Monzon AM; Carraro M; Chiricosta L; Reggiani F; Han J; Ozturk K; Wang Y; Miller M; Bromberg Y; Capriotti E; Savojardo C; Babbi G; Martelli PL; Casadio R; Katsonis P; Lichtarge O; Carter H; Kousi M; Katsanis N; Andreoletti G; Moult J; Brenner SE; Ferrari C; Leonardi E; Tosatto SCE Hum Mutat; 2019 Sep; 40(9):1474-1485. PubMed ID: 31260570 [TBL] [Abstract][Full Text] [Related]
87. Predicting the pathogenicity of missense variants using features derived from AlphaFold2. Schmidt A; Röner S; Mai K; Klinkhammer H; Kircher M; Ludwig KU Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084271 [TBL] [Abstract][Full Text] [Related]
88. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Pejaver V; Urresti J; Lugo-Martinez J; Pagel KA; Lin GN; Nam HJ; Mort M; Cooper DN; Sebat J; Iakoucheva LM; Mooney SD; Radivojac P Nat Commun; 2020 Nov; 11(1):5918. PubMed ID: 33219223 [TBL] [Abstract][Full Text] [Related]
90. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides. Martín-Navarro A; Gaudioso-Simón A; Álvarez-Jarreta J; Montoya J; Mayordomo E; Ruiz-Pesini E BMC Bioinformatics; 2017 Mar; 18(1):158. PubMed ID: 28270093 [TBL] [Abstract][Full Text] [Related]
91. Comparison of Bioinformatics Prediction, Molecular Modeling, and Functional Analyses of FOXC1 Mutations in Patients with Axenfeld-Rieger Syndrome. Seifi M; Footz T; Taylor SA; Walter MA Hum Mutat; 2017 Feb; 38(2):169-179. PubMed ID: 27804176 [TBL] [Abstract][Full Text] [Related]
92. Prospective functional classification of all possible missense variants in PPARG. Majithia AR; Tsuda B; Agostini M; Gnanapradeepan K; Rice R; Peloso G; Patel KA; Zhang X; Broekema MF; Patterson N; Duby M; Sharpe T; Kalkhoven E; Rosen ED; Barroso I; Ellard S; ; Kathiresan S; ; O'Rahilly S; ; Chatterjee K; Florez JC; Mikkelsen T; Savage DB; Altshuler D Nat Genet; 2016 Dec; 48(12):1570-1575. PubMed ID: 27749844 [TBL] [Abstract][Full Text] [Related]
93. Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers. Reva B BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S8. PubMed ID: 23819556 [TBL] [Abstract][Full Text] [Related]
95. The structural impact of cancer-associated missense mutations in oncogenes and tumor suppressors. Stehr H; Jang SH; Duarte JM; Wierling C; Lehrach H; Lappe M; Lange BM Mol Cancer; 2011 May; 10():54. PubMed ID: 21575214 [TBL] [Abstract][Full Text] [Related]
96. Protein structure-based evaluation of missense variants: Resources, challenges and future directions. David A; Sternberg MJE Curr Opin Struct Biol; 2023 Jun; 80():102600. PubMed ID: 37126977 [TBL] [Abstract][Full Text] [Related]
97. SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity. Casey RT; Ascher DB; Rattenberry E; Izatt L; Andrews KA; Simpson HL; Challis B; Park SM; Bulusu VR; Lalloo F; Pires DEV; West H; Clark GR; Smith PS; Whitworth J; Papathomas TG; Taniere P; Savisaar R; Hurst LD; Woodward ER; Maher ER Mol Genet Genomic Med; 2017 May; 5(3):237-250. PubMed ID: 28546994 [TBL] [Abstract][Full Text] [Related]
98. CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Critical Assessment of Genome Interpretation Consortium Genome Biol; 2024 Feb; 25(1):53. PubMed ID: 38389099 [TBL] [Abstract][Full Text] [Related]
99. Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset. Zheng F; Liu Y; Yang Y; Wen Y; Li M Protein Sci; 2024 Jan; 33(1):e4861. PubMed ID: 38084013 [TBL] [Abstract][Full Text] [Related]
100. DVA: predicting the functional impact of single nucleotide missense variants. Wang D; Li J; Wang E; Wang Y BMC Bioinformatics; 2024 Mar; 25(Suppl 1):100. PubMed ID: 38448823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]