These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34063839)

  • 61. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates.
    Benson BR; Stone HA; Prud'homme RK
    Lab Chip; 2013 Dec; 13(23):4507-11. PubMed ID: 24122050
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Acoustofluidic generation of droplets with tunable chemical concentrations.
    Park J; Destgeer G; Afzal M; Sung HJ
    Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous Droplet Generation with In-Series Droplet T-Junctions Induced by Gravity-Induced Flow.
    Bajgiran KR; Cordova AS; Elkhanoufi R; Dorman JA; Melvin AT
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip.
    Feng X; Yi Y; Yu X; Pang DW; Zhang ZL
    Lab Chip; 2010 Feb; 10(3):313-9. PubMed ID: 20091002
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications.
    Sartipzadeh O; Naghib SM; Haghiralsadat F; Shokati F; Rahmanian M
    Sci Rep; 2022 May; 12(1):8382. PubMed ID: 35589742
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators.
    Li W; Young EWK; Seo M; Nie Z; Garstecki P; Simmons CA; Kumacheva E
    Soft Matter; 2008 Jan; 4(2):258-262. PubMed ID: 32907238
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields.
    Varma VB; Ray A; Wang ZM; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Nov; 6():37671. PubMed ID: 27892475
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Droplet Generation in a Flow-Focusing Microfluidic Device with External Mechanical Vibration.
    Yin Z; Huang Z; Lin X; Gao X; Bao F
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751579
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On-chip droplet production regimes using surface acoustic waves.
    Brenker JC; Collins DJ; Van Phan H; Alan T; Neild A
    Lab Chip; 2016 Apr; 16(9):1675-83. PubMed ID: 27045939
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.