These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 34063877)
21. The expanding scope of antimicrobial peptide structures and their modes of action. Nguyen LT; Haney EF; Vogel HJ Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034 [TBL] [Abstract][Full Text] [Related]
22. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614 [TBL] [Abstract][Full Text] [Related]
23. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature. Vineeth Kumar TV; Sanil G Curr Protein Pept Sci; 2017; 18(12):1263-1272. PubMed ID: 28699512 [TBL] [Abstract][Full Text] [Related]
24. Development of antimicrobial peptides (AMPs) for use in self-decontaminating coatings. Fulmer PA; Lundin JG; Wynne JH ACS Appl Mater Interfaces; 2010 Apr; 2(4):1266-70. PubMed ID: 20423145 [TBL] [Abstract][Full Text] [Related]
25. Antimicrobial polymers as synthetic mimics of host-defense peptides. Kuroda K; Caputo GA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):49-66. PubMed ID: 23076870 [TBL] [Abstract][Full Text] [Related]
26. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Kamaruzzaman NF; Tan LP; Hamdan RH; Choong SS; Wong WK; Gibson AJ; Chivu A; Pina MF Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31167476 [TBL] [Abstract][Full Text] [Related]
27. Rapid Assembly of Infection-Resistant Coatings: Screening and Identification of Antimicrobial Peptides Works in Cooperation with an Antifouling Background. Yu K; Alzahrani A; Khoddami S; Cheng JTJ; Mei Y; Gill A; Luo HD; Haney EF; Hilpert K; Hancock REW; Lange D; Kizhakkedathu JN ACS Appl Mater Interfaces; 2021 Aug; 13(31):36784-36799. PubMed ID: 34328312 [TBL] [Abstract][Full Text] [Related]
28. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
29. Cationic antimicrobial polymers and their assemblies. Carmona-Ribeiro AM; de Melo Carrasco LD Int J Mol Sci; 2013 May; 14(5):9906-46. PubMed ID: 23665898 [TBL] [Abstract][Full Text] [Related]
30. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. Yu L; Li K; Zhang J; Jin H; Saleem A; Song Q; Jia Q; Li P ACS Appl Bio Mater; 2022 Feb; 5(2):366-393. PubMed ID: 35072444 [TBL] [Abstract][Full Text] [Related]
32. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens. Lakshminarayanan R; Ye E; Young DJ; Li Z; Loh XJ Adv Healthc Mater; 2018 Jul; 7(13):e1701400. PubMed ID: 29717819 [TBL] [Abstract][Full Text] [Related]
33. Antimicrobial peptide polymers: no escape to ESKAPE pathogens-a review. Mukhopadhyay S; Bharath Prasad AS; Mehta CH; Nayak UY World J Microbiol Biotechnol; 2020 Aug; 36(9):131. PubMed ID: 32737599 [TBL] [Abstract][Full Text] [Related]
34. Effect of Cationic Groups on the Selectivity of Ternary Antimicrobial Polymers. Pham P; Oliver S; Nguyen DT; Boyer C Macromol Rapid Commun; 2022 Nov; 43(21):e2200377. PubMed ID: 35894165 [TBL] [Abstract][Full Text] [Related]
35. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. Obuobi S; Tay HK; Tram NDT; Selvarajan V; Khara JS; Wang Y; Ee PLR J Control Release; 2019 Nov; 313():120-130. PubMed ID: 31629042 [TBL] [Abstract][Full Text] [Related]
36. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Pranantyo D; Zhang K; Si Z; Hou Z; Chan-Park MB Biomacromolecules; 2022 May; 23(5):1873-1891. PubMed ID: 35471022 [TBL] [Abstract][Full Text] [Related]
37. Recent advances in the design of antimicrobial peptide conjugates. Silva ARP; Guimarães MS; Rabelo J; Belén LH; Perecin CJ; Farías JG; Santos JHPM; Rangel-Yagui CO J Mater Chem B; 2022 May; 10(19):3587-3600. PubMed ID: 35262120 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of deoxythymidine-based cationic amphiphiles as antimicrobial, antibiofilm, and anti-inflammatory agents. Kim EY; Kumar SD; Bang JK; Ajish C; Yang S; Ganbaatar B; Kim J; Lee CW; Cho SJ; Shin SY Int J Antimicrob Agents; 2023 Sep; 62(3):106909. PubMed ID: 37419291 [TBL] [Abstract][Full Text] [Related]
39. Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Yount NY; Yeaman MR Protein Pept Lett; 2005 Jan; 12(1):49-67. PubMed ID: 15638803 [TBL] [Abstract][Full Text] [Related]
40. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Parchebafi A; Tamanaee F; Ehteram H; Ahmad E; Nikzad H; Haddad Kashani H Microb Cell Fact; 2022 Jun; 21(1):118. PubMed ID: 35717207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]