These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34063916)

  • 21. Slippery when wet: mobility regimes of confined drops in electrowetting.
    Baratian D; Ruiz-Gutiérrez É; Mugele F; Ledesma-Aguilar R
    Soft Matter; 2019 Sep; 15(35):7063-7070. PubMed ID: 31441482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces.
    Yan X; Qin Y; Chen F; Zhao G; Sett S; Hoque MJ; Rabbi KF; Zhang X; Wang Z; Li L; Chen F; Feng J; Miljkovic N
    ACS Nano; 2020 Oct; 14(10):12796-12809. PubMed ID: 33052666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices.
    Kleinert J; Srinivasan V; Rival A; Delattre C; Velev OD; Pamula VK
    Biomicrofluidics; 2015 May; 9(3):034104. PubMed ID: 26045729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction.
    Agrawal P; Salomons TT; Chiriac DS; Ross AC; Oleschuk RD
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28327-28335. PubMed ID: 31291086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C; Wang T; Che Z; Jia M; Sun K
    Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic Electrowetting on Wrinkled Surfaces: Enhanced Wetting and Dependency on Initial Wetting State.
    Parihar V; Bandyopadhyay S; Das S; Dasgupta S
    Langmuir; 2018 Feb; 34(5):1844-1854. PubMed ID: 29309153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices.
    Yan Z; Jin M; Li Z; Zhou G; Shui L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30691049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3-D manipulation of a single nano-droplet on graphene with an electrowetting driving scheme: critical condition and tunability.
    Zeng J; Zhang S; Tang K; Chen G; Yuan W; Tang Y
    Nanoscale; 2018 Aug; 10(34):16079-16086. PubMed ID: 30109343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets.
    Gao S; Wu X
    Langmuir; 2022 Oct; 38(41):12674-12681. PubMed ID: 36201740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-low voltage electrowetting using graphite surfaces.
    Lomax DJ; Kant P; Williams AT; Patten HV; Zou Y; Juel A; Dryfe RA
    Soft Matter; 2016 Oct; 12(42):8798-8804. PubMed ID: 27722442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neither Lippmann nor Young: enabling electrowetting modeling on structured dielectric surfaces.
    Chamakos NT; Kavousanakis ME; Papathanasiou AG
    Langmuir; 2014 Apr; 30(16):4662-70. PubMed ID: 24697520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Investigation of the Actuation of Electrowetted Nanodroplets.
    Pathak S; Chakraborty M; DasGupta S
    Langmuir; 2022 Mar; 38(12):3656-3665. PubMed ID: 35286095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultimate jumping of coalesced droplets on superhydrophobic surfaces.
    Yuan Z; Gao S; Hu Z; Dai L; Hou H; Chu F; Wu X
    J Colloid Interface Sci; 2021 Apr; 587():429-436. PubMed ID: 33383432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic charging of jumping droplets.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    Nat Commun; 2013; 4():2517. PubMed ID: 24071721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient modelling of droplet dynamics on complex surfaces.
    Karapetsas G; Chamakos NT; Papathanasiou AG
    J Phys Condens Matter; 2016 Mar; 28(8):085101. PubMed ID: 26828706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Actuation of a Nonconductive Droplet in an Aqueous Fluid by Reversed Electrowetting Effect.
    Wang Q; Xu M; Wang C; Gu J; Hu N; Lyu J; Yao W
    Langmuir; 2020 Jul; 36(28):8152-8164. PubMed ID: 32571027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.