These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
853 related articles for article (PubMed ID: 34064039)
1. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Kouhpayeh S; Shariati L; Boshtam M; Rahimmanesh I; Mirian M; Esmaeili Y; Najaflu M; Khanahmad N; Zeinalian M; Trovato M; Tay FR; Khanahmad H; Makvandi P Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34064039 [TBL] [Abstract][Full Text] [Related]
2. Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. Brosey CA; Houl JH; Katsonis P; Balapiti-Modarage LPF; Bommagani S; Arvai A; Moiani D; Bacolla A; Link T; Warden LS; Lichtarge O; Jones DE; Ahmed Z; Tainer JA Prog Biophys Mol Biol; 2021 Aug; 163():171-186. PubMed ID: 33636189 [TBL] [Abstract][Full Text] [Related]
3. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial. Dioh W; Chabane M; Tourette C; Azbekyan A; Morelot-Panzini C; Hajjar LA; Lins M; Nair GB; Whitehouse T; Mariani J; Latil M; Camelo S; Lafont R; Dilda PJ; Veillet S; Agus S Trials; 2021 Jan; 22(1):42. PubMed ID: 33430924 [TBL] [Abstract][Full Text] [Related]
4. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. Buelow B; Song Y; Scharenberg AM J Biol Chem; 2008 Sep; 283(36):24571-83. PubMed ID: 18599483 [TBL] [Abstract][Full Text] [Related]
5. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Blenn C; Wyrsch P; Bader J; Bollhalder M; Althaus FR Cell Mol Life Sci; 2011 Apr; 68(8):1455-66. PubMed ID: 20878536 [TBL] [Abstract][Full Text] [Related]
6. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Artese A; Svicher V; Costa G; Salpini R; Di Maio VC; Alkhatib M; Ambrosio FA; Santoro MM; Assaraf YG; Alcaro S; Ceccherini-Silberstein F Drug Resist Updat; 2020 Dec; 53():100721. PubMed ID: 33132205 [TBL] [Abstract][Full Text] [Related]
7. Stenoparib, an Inhibitor of Cellular Poly(ADP-Ribose) Polymerase, Blocks Replication of the SARS-CoV-2 and HCoV-NL63 Human Coronaviruses Stone NE; Jaramillo SA; Jones AN; Vazquez AJ; Martz M; Versluis LM; Raniere MO; Nunnally HE; Zarn KE; Nottingham R; Ng KR; Sahl JW; Wagner DM; Knudsen S; Settles EW; Keim P; French CT mBio; 2021 Jan; 12(1):. PubMed ID: 33468703 [TBL] [Abstract][Full Text] [Related]
8. Potential Roles of the Renin-Angiotensin System in the Pathogenesis and Treatment of COVID-19. Lu L; Liu X; Jin R; Guan R; Lin R; Qu Z Biomed Res Int; 2020; 2020():7520746. PubMed ID: 33204713 [TBL] [Abstract][Full Text] [Related]
9. Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D. Peng MY; Liu WC; Zheng JQ; Lu CL; Hou YC; Zheng CM; Song JY; Lu KC; Chao YC Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065735 [TBL] [Abstract][Full Text] [Related]
10. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Guo YR; Cao QD; Hong ZS; Tan YY; Chen SD; Jin HJ; Tan KS; Wang DY; Yan Y Mil Med Res; 2020 Mar; 7(1):11. PubMed ID: 32169119 [TBL] [Abstract][Full Text] [Related]
11. Designing therapeutic strategies to combat severe acute respiratory syndrome coronavirus-2 disease: COVID-19. Rohilla S Drug Dev Res; 2021 Feb; 82(1):12-26. PubMed ID: 33216381 [TBL] [Abstract][Full Text] [Related]
12. Effects of β-Blockers on the Sympathetic and Cytokines Storms in Covid-19. Al-Kuraishy HM; Al-Gareeb AI; Mostafa-Hedeab G; Kasozi KI; Zirintunda G; Aslam A; Allahyani M; Welburn SC; Batiha GE Front Immunol; 2021; 12():749291. PubMed ID: 34867978 [TBL] [Abstract][Full Text] [Related]
13. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Kumar R; Rathi H; Haq A; Wimalawansa SJ; Sharma A Virus Res; 2021 Jan; 292():198235. PubMed ID: 33232783 [TBL] [Abstract][Full Text] [Related]
14. The fight against COVID-19: Striking a balance in the renin-angiotensin system. Dean AQ; Bozza WP; Twomey JD; Luo S; Nalli A; Zhang B Drug Discov Today; 2021 Oct; 26(10):2214-2220. PubMed ID: 33865979 [TBL] [Abstract][Full Text] [Related]
15. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Yadav R; Chaudhary JK; Jain N; Chaudhary PK; Khanra S; Dhamija P; Sharma A; Kumar A; Handu S Cells; 2021 Apr; 10(4):. PubMed ID: 33917481 [TBL] [Abstract][Full Text] [Related]
16. Role of Poly(ADP-ribose) Polymerase (PARP1) in Viral Infection and its Implication in SARS-CoV-2 Pathogenesis. Rajawat J; Chandra A Curr Drug Targets; 2021; 22(13):1477-1484. PubMed ID: 33494667 [TBL] [Abstract][Full Text] [Related]
18. Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Khadke S; Ahmed N; Ahmed N; Ratts R; Raju S; Gallogly M; de Lima M; Sohail MR Virol J; 2020 Oct; 17(1):154. PubMed ID: 33059711 [TBL] [Abstract][Full Text] [Related]
19. Nanomedicine-mediated recovery of antioxidant glutathione peroxidase activity after oxidative-stress cellular damage: Insights for neurological long COVID. Akanchise T; Angelov B; Angelova A J Med Virol; 2024 May; 96(5):e29680. PubMed ID: 38767144 [TBL] [Abstract][Full Text] [Related]
20. Drugs acting on the renin-angiotensin system and SARS-CoV-2. Vitiello A; Pelliccia C; Ferrara F Drug Discov Today; 2021 Apr; 26(4):870-874. PubMed ID: 33486116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]