These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3406414)

  • 1. Field-cycling relaxometry: medical applications.
    Rinck PA; Fischer HW; Vander Elst L; Van Haverbeke Y; Muller RN
    Radiology; 1988 Sep; 168(3):843-9. PubMed ID: 3406414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative magnetic resonance imaging of rat brain tumors: in vivo NMR relaxometry for the discrimination of normal and pathological tissues.
    Hoehn-Berlage M; Bockhorst K
    Technol Health Care; 1994 Dec; 2(4):247-54. PubMed ID: 7842309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Field and temperature dependence of contrast in magnetic resonance imaging].
    Rinck PA; Muller RN; Fischer H
    Rofo; 1987 Aug; 147(2):200-6. PubMed ID: 2819980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen MR imaging of the head at 0.35 T and 0.7 T: effects of magnetic field strength.
    Posin JP; Arakawa M; Crooks LE; Feinberg DA; Hoenninger JC; Watts JC; Mills CM; Kaufman L
    Radiology; 1985 Dec; 157(3):679-83. PubMed ID: 4059555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3.0-T functional brain imaging: a 5-year experience.
    Scarabino T; Giannatempo GM; Popolizio T; Tosetti M; d'Alesio V; Esposito F; Di Salle F; Di Costanzo A; Bertolino A; Maggialetti A; Salvolini U
    Radiol Med; 2007 Feb; 112(1):97-112. PubMed ID: 17310287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic relaxation dispersion of murine tissue for development of T
    Araya YT; Martínez-Santiesteban F; Handler WB; Harris CT; Chronik BA; Scholl TJ
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 29044888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging.
    Mathews VP; Caldemeyer KS; Lowe MJ; Greenspan SL; Weber DM; Ulmer JL
    Radiology; 1999 Apr; 211(1):257-63. PubMed ID: 10189481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR imaging contrast in human brain tissue: assessment and optimization at 4 T.
    Duewell S; Wolff SD; Wen H; Balaban RS; Jezzard P
    Radiology; 1996 Jun; 199(3):780-6. PubMed ID: 8638005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [3 Tesla magnetic resonance tomography--clinical applications].
    Trattnig S
    Wien Med Wochenschr Suppl; 2002; (113):22-7. PubMed ID: 12621832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain tumor enhancement in MR imaging at 3 Tesla: comparison of SNR and CNR gain using TSE and GRE techniques.
    Wintersperger BJ; Runge VM; Biswas J; Reiser MF; Schoenberg SO
    Invest Radiol; 2007 Aug; 42(8):558-63. PubMed ID: 17620938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low field (0.02 T) nuclear magnetic resonance imaging of the brain.
    Sepponen RE; Sipponen JT; Sivula A
    J Comput Assist Tomogr; 1985; 9(2):237-41. PubMed ID: 3973144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of contrast media in neuroimaging.
    Essig M; Dinkel J; Gutierrez JE
    Magn Reson Imaging Clin N Am; 2012 Nov; 20(4):633-48. PubMed ID: 23088943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance imaging: applications for neurological abnormalities.
    Mills CM; Brant-Zawadzki M; Crooks LE; Kaufman L
    Radiat Med; 1983; 1(1):1-7. PubMed ID: 6679892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the tumour extracellular matrix by in vivo Fast Field Cycling relaxometry after the administration of a Gadolinium-based MRI contrast agent.
    Baroni S; Ruggiero MR; Aime S; Geninatti Crich S
    Magn Reson Chem; 2019 Aug; 57(10):845-851. PubMed ID: 30675933
    [No Abstract]   [Full Text] [Related]  

  • 15. MR relaxometry imaging. Work in progress.
    Carlson JW; Goldhaber DM; Brito A; Kaufman L
    Radiology; 1992 Sep; 184(3):635-9. PubMed ID: 1509044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain.
    Melhem ER; Bert RJ; Walker RE
    AJR Am J Roentgenol; 1998 Sep; 171(3):803-7. PubMed ID: 9725320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications.
    Kuhl CK; Träber F; Schild HH
    Radiology; 2008 Mar; 246(3):675-96. PubMed ID: 18309012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.
    Fries P; Runge VM; Bücker A; Schürholz H; Reith W; Robert P; Jackson C; Lanz T; Schneider G
    Invest Radiol; 2009 Apr; 44(4):200-6. PubMed ID: 19300099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents.
    Rinck PA; Muller RN
    Eur Radiol; 1999; 9(5):998-1004. PubMed ID: 10370005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases.
    Ba-Ssalamah A; Nöbauer-Huhmann IM; Pinker K; Schibany N; Prokesch R; Mehrain S; Mlynárik V; Fog A; Heimberger K; Trattnig S
    Invest Radiol; 2003 Jul; 38(7):415-22. PubMed ID: 12821855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.