These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34064198)

  • 61. Flexible Memristive Devices Based on InP/ZnSe/ZnS Core-Multishell Quantum Dot Nanocomposites.
    Kim DH; Wu C; Park DH; Kim WK; Seo HW; Kim SW; Kim TW
    ACS Appl Mater Interfaces; 2018 May; 10(17):14843-14849. PubMed ID: 29631394
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adipic acid directed self-healable supramolecular metallogels of Co(II) and Ni(II): intriguing scaffolds for comparative optical-phenomenon in terms of third-order optical non-linearity.
    Lepcha G; Singha T; Majumdar S; Pradhan AK; Das KS; Datta PK; Dey B
    Dalton Trans; 2022 Sep; 51(35):13435-13443. PubMed ID: 35993453
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ag-doped InP/ZnS quantum dots for type-I photosensitizers.
    Ren C; Hu D; Cui Y; Chen P; Xu X; Cheng J; He T
    Chem Commun (Camb); 2023 Feb; 59(16):2311-2314. PubMed ID: 36748302
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evolution of Nonlinear Optical Characteristics of Magnetic Nanoparticle Colloidal Suspensions after Laser-Induced Clusters.
    Yang X; Li Q; Meng X; Li D
    ACS Omega; 2020 Jul; 5(26):15821-15827. PubMed ID: 32656402
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber.
    Ming N; Tao S; Yang W; Chen Q; Sun R; Wang C; Wang S; Man B; Zhang H
    Opt Express; 2018 Apr; 26(7):9017-9026. PubMed ID: 29715860
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Photophysics and nonlinear optical properties of tetra- and octabrominated silicon naphthalocyanines.
    Li Y; Dini D; Calvete MJ; Hanack M; Sun W
    J Phys Chem A; 2008 Jan; 112(3):472-80. PubMed ID: 18163601
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonlinear absorption and nonlinear refraction in a chemical vapor deposition-grown, ultrathin hexagonal boron nitride film.
    Ouyang Q; Zhang K; Chen W; Zhou F; Ji W
    Opt Lett; 2016 Apr; 41(7):1368-71. PubMed ID: 27192238
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices.
    Zhang W; Zhuang W; Liu R; Xing X; Qu X; Liu H; Xu B; Wang K; Sun XW
    ACS Omega; 2019 Nov; 4(21):18961-18968. PubMed ID: 31763517
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms.
    Bankole OM; Achadu OJ; Nyokong T
    J Fluoresc; 2017 Mar; 27(2):755-766. PubMed ID: 28054221
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots.
    Jeong KS; Guyot-Sionnest P
    ACS Nano; 2016 Feb; 10(2):2225-31. PubMed ID: 26799582
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
    Reid KR; McBride JR; Freymeyer NJ; Thal LB; Rosenthal SJ
    Nano Lett; 2018 Feb; 18(2):709-716. PubMed ID: 29282985
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.
    Huang K; Demadrille R; Silly MG; Sirotti F; Reiss P; Renault O
    ACS Nano; 2010 Aug; 4(8):4799-805. PubMed ID: 20666468
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fast Electron and Slow Hole Relaxation in InP-Based Colloidal Quantum Dots.
    Richter AF; Binder M; Bohn BJ; Grumbach N; Neyshtadt S; Urban AS; Feldmann J
    ACS Nano; 2019 Dec; 13(12):14408-14415. PubMed ID: 31790203
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs.
    Kim K; Jeong S; Woo JY; Han CS
    Nanotechnology; 2012 Feb; 23(6):065602. PubMed ID: 22248987
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nonlinear optical property of a Bi-doped GaAs semiconductor saturable absorber.
    Xu R; Zhao S; Yang K; Li G; Li T; Li D
    Opt Express; 2018 Apr; 26(7):8542-8549. PubMed ID: 29715820
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimental and theoretical investigations of nonlinear optical properties of 1,4-Diamino-9,10-Anthraquionone.
    Zafar S; Khan ZH; Khan MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():164-9. PubMed ID: 23770504
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonlinear optical response of graphene oxide quantum dots fabricated from electrospun polyacrylonitrile fibers.
    Gomez CL; Zaca Morán O; Rojas-López M; Morán-Raya C; Zaca-Morán P
    Heliyon; 2023 Jan; 9(1):e12986. PubMed ID: 36704290
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Unusual higher-order nonlinear optical properties in Au-coated triangular Ag-Au nanostructures.
    Mondal K; Biswas S; Singha T; Pal SK; Datta PK; Ghosh SK; Kumbhakar P
    Opt Lett; 2021 Oct; 46(19):4879-4882. PubMed ID: 34598223
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nonlinear optical response of chloroaluminiumphthalocyanine encapsulated by silica core-shell particles.
    Sathiyamoorthy K; Vijayan C; Varma S
    Langmuir; 2008 Jul; 24(14):7485-91. PubMed ID: 18547086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.