These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34064398)

  • 41. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering.
    Yang X; Wang Y; Zhou Y; Chen J; Wan Q
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Additive Manufacturing of Bioactive Glass and Its Polymer Composites as Bone Tissue Engineering Scaffolds: A Review.
    He L; Yin J; Gao X
    Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses.
    Petretta M; Gambardella A; Boi M; Berni M; Cavallo C; Marchiori G; Maltarello MC; Bellucci D; Fini M; Baldini N; Grigolo B; Cannillo V
    Biology (Basel); 2021 May; 10(5):. PubMed ID: 34064398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.
    Poh PS; Hutmacher DW; Stevens MM; Woodruff MA
    Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells.
    Wang X; Molino BZ; Pitkänen S; Ojansivu M; Xu C; Hannula M; Hyttinen J; Miettinen S; Hupa L; Wallace G
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4496-4510. PubMed ID: 33438415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorous pentoxide-free bioactive glass exhibits dose-dependent angiogenic and osteogenic capacities which are retained in glass polymeric composite scaffolds.
    Font Tellado S; Delgado JA; Poh SPP; Zhang W; García-Vallés M; Martínez S; Gorustovich A; Morejón L; van Griensven M; Balmayor ER
    Biomater Sci; 2021 Nov; 9(23):7876-7894. PubMed ID: 34676835
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art.
    Sergi R; Bellucci D; Cannillo V
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization.
    Distler T; Fournier N; Grünewald A; Polley C; Seitz H; Detsch R; Boccaccini AR
    Front Bioeng Biotechnol; 2020; 8():552. PubMed ID: 32671025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration.
    Alksne M; Kalvaityte M; Simoliunas E; Rinkunaite I; Gendviliene I; Locs J; Rutkunas V; Bukelskiene V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103641. PubMed ID: 32174399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioactive glasses and glass-ceramics versus hydroxyapatite: Comparison of angiogenic potential and biological responsiveness.
    Bellucci D; Braccini S; Chiellini F; Balasubramanian P; Boccaccini AR; Cannillo V
    J Biomed Mater Res A; 2019 Dec; 107(12):2601-2609. PubMed ID: 31376313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA.
    Marchiori G; Berni M; Boi M; Petretta M; Grigolo B; Bellucci D; Cannillo V; Garavelli C; Bianchi M
    Med Eng Phys; 2019 Jul; 69():92-99. PubMed ID: 31101484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization.
    Caravaggi P; Liverani E; Leardini A; Fortunato A; Belvedere C; Baruffaldi F; Fini M; Parrilli A; Mattioli-Belmonte M; Tomesani L; Pagani S
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2343-2353. PubMed ID: 30689288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.
    Roseti L; Parisi V; Petretta M; Cavallo C; Desando G; Bartolotti I; Grigolo B
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1246-1262. PubMed ID: 28575964
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.