BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34064513)

  • 1. Control of Porous Layer Thickness in Thermophoretic Deposition of Nanoparticles.
    Schalk M; Pokhrel S; Schowalter M; Rosenauer A; Mädler L
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34064513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis.
    Li H; Pokhrel S; Schowalter M; Rosenauer A; Kiefer J; Mädler L
    Combust Flame; 2020 May; 215():389-400. PubMed ID: 32903291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing Films.
    Blattmann CO; Güntner AT; Pratsinis SE
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23926-23933. PubMed ID: 28621930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame-made ultra-porous TiO
    Mayon YO; Duong T; Nasiri N; White TP; Tricoli A; Catchpole KR
    Nanotechnology; 2016 Dec; 27(50):505403. PubMed ID: 27875335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications.
    Pokhrel S; Mädler L
    Energy Fuels; 2020 Nov; 34(11):13209-13224. PubMed ID: 33343081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-fogging nanofibrous SiO(2) and nanostructured SiO(2)-TiO(2) films made by rapid flame deposition and in situ annealing.
    Tricoli A; Righettoni M; Pratsinis SE
    Langmuir; 2009 Nov; 25(21):12578-84. PubMed ID: 19621912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors.
    Rudin T; Wegner K; Pratsinis SE
    J Nanopart Res; 2011 Jul; 13(7):2715-2725. PubMed ID: 23408113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Cu Substrate Roughness and Sn Layer Thickness on Whisker Development from Sn Thin-Films.
    Illés B; Hurtony T; Krammer O; Medgyes B; Dušek K; Bušek D
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable flame synthesis of SiO2 nanowires: dynamics of growth.
    Tricoli A; Righettoni M; Krumeich F; Stark WJ; Pratsinis SE
    Nanotechnology; 2010 Nov; 21(46):465604. PubMed ID: 20972311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of pristine and Sn doped copper gallium sulphide (CGS) thin films using spray pyrolysis technique.
    Krishna S; Vasu V
    Heliyon; 2024 Feb; 10(3):e25425. PubMed ID: 38327445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.
    Sorvali M; Vuori L; Pudas M; Haapanen J; Mahlberg R; Ronkainen H; Honkanen M; Valden M; Mäkelä JM
    Nanotechnology; 2018 May; 29(18):185708. PubMed ID: 29451126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.
    Singkammo S; Wisitsoraat A; Sriprachuabwong C; Tuantranont A; Phanichphant S; Liewhiran C
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3077-92. PubMed ID: 25602118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method to set the spray properties for flame spray pyrolysis production of nanoparticles.
    Alhaleeb MA; Machin NE
    Heliyon; 2020 Sep; 6(9):e04840. PubMed ID: 33005777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric atomic layer deposition of SnO
    Nguyen VH; Akbari M; Sekkat A; Ta HTT; Resende J; Jiménez C; Musselman KP; Muñoz-Rojas D
    Dalton Trans; 2022 Jun; 51(24):9278-9290. PubMed ID: 35670303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flame Spray Pyrolysis Synthesis of WO
    Wu C; Zhang Y; Yang L; Xiao B; Jiao A; Li K; Chen T; Huang Z; Lin H
    Langmuir; 2022 Dec; 38(50):15506-15515. PubMed ID: 36480753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance.
    Panigrahi S; Nunes D; Calmeiro T; Kardarian K; Martins R; Fortunato E
    ACS Comb Sci; 2017 Feb; 19(2):113-120. PubMed ID: 27992163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Transparent and Surface-Plasmon-Enhanced Visible-Photodetector Based on Zinc Oxide Thin-Film Transistors with Heterojunction Structure.
    Wang CJ; You HC; Lin K; Ou JH; Chao KH; Ko FH
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31694214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H(2) Gas Sensor.
    Tamaekong N; Liewhiran C; Wisitsoraat A; Phanichphant S
    Sensors (Basel); 2009; 9(9):6652-69. PubMed ID: 22399971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of thickness on nanostructured SnO2 thin films by spray pyrolysis as highly sensitive H2S gas sensor.
    Patil GE; Kajale DD; Gaikwad VB; Jain GH
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6192-201. PubMed ID: 22962726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.