BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34064563)

  • 1. Statistical Based Bioprocess Design for Improved Production of Amylase from Halophilic
    Bandal JN; Tile VA; Sayyed RZ; Jadhav HP; Azelee NIW; Danish S; Datta R
    Molecules; 2021 May; 26(10):. PubMed ID: 34064563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Optimization of Amylase Production in WangLB, a High Amylase-Producing Strain of Bacillus.
    Wang S; Jeyaseelan J; Liu Y; Qin W
    Appl Biochem Biotechnol; 2016 Sep; 180(1):136-51. PubMed ID: 27116321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens.
    Gangadharan D; Sivaramakrishnan S; Nampoothiri KM; Sukumaran RK; Pandey A
    Bioresour Technol; 2008 Jul; 99(11):4597-602. PubMed ID: 17761415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola.
    Sharma A; Satyanarayana T
    J Biosci Bioeng; 2011 May; 111(5):550-3. PubMed ID: 21292551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A promising microbial α-amylase production, and purification from Bacillus cereus and its assessment as antibiofilm agent against Pseudomonas aeruginosa pathogen.
    Abo-Kamer AM; Abd-El-Salam IS; Mostafa FA; Mustafa AA; Al-Madboly LA
    Microb Cell Fact; 2023 Aug; 22(1):141. PubMed ID: 37528448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of cold-adapted amylase by marine bacterium Wangia sp. C52: optimization, modeling, and partial characterization.
    Liu J; Zhang Z; Liu Z; Zhu H; Dang H; Lu J; Cui Z
    Mar Biotechnol (NY); 2011 Oct; 13(5):837-44. PubMed ID: 21365455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous production of commercial enzymes using agro industrial residues by statistical approach.
    Viayaraghavan P; Jeba Kumar S; Valan Arasu M; Al-Dhabi NA
    J Sci Food Agric; 2019 Apr; 99(6):2685-2696. PubMed ID: 30345553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.
    Shirodkar PV; Muraleedharan UD
    Prep Biochem Biotechnol; 2017 Nov; 47(10):1043-1049. PubMed ID: 29020512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermoactive alpha-amylase from a Bacillus sp. isolated from CSMCRI salt farm.
    Pancha I; Jain D; Shrivastav A; Mishra SK; Shethia B; Mishra S; V P M; Jha B
    Int J Biol Macromol; 2010 Aug; 47(2):288-91. PubMed ID: 20417228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of alpha-amylase producing Bacillus sp. from dhal industry waste.
    Thippeswamy S; Girigowda K; Mulimani VH
    Indian J Biochem Biophys; 2006 Oct; 43(5):295-8. PubMed ID: 17133736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical approach for the production of thermostable and alklophilic alpha-amylase from Bacillus amyloliquefaciens KCP2 under solid-state fermentation.
    Prajapati VS; Trivedi UB; Patel KC
    3 Biotech; 2015 Apr; 5(2):211-220. PubMed ID: 28324580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1.
    Du R; Zhao F; Qiao X; Song Q; Ye G; Wang Y; Wang B; Han Y; Zhou Z
    Prep Biochem Biotechnol; 2018; 48(8):768-774. PubMed ID: 30303444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK.
    Kiran KK; Chandra TS
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1023-31. PubMed ID: 17999060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable, inducible thermoacidophilic alpha-amylase from Bacillus acidocaldarius.
    Buonocore V; Caporale C; De Rosa M; Gambacorta A
    J Bacteriol; 1976 Nov; 128(2):515-21. PubMed ID: 10276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprocess development for the production of sonorensin by Bacillus sonorensis MT93 and its application as a food preservative.
    Chopra L; Singh G; Jena KK; Verma H; Sahoo DK
    Bioresour Technol; 2015 Jan; 175():358-66. PubMed ID: 25459843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium optimization for submerged fermentative production of β-cyclodextrin glucosyltransferase by isolated novel alkalihalophilic Bacillus sp. NCIM 5799 using statistical approach.
    Solanki P; Banerjee T
    Lett Appl Microbiol; 2022 Aug; 75(2):431-441. PubMed ID: 35611566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different carbon sources on the production of amylase by Bacillus sp. MD 124.
    Jana M; Chattopadhyay DJ; Pati BR
    Acta Microbiol Immunol Hung; 1998; 45(2):229-37. PubMed ID: 9768291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability.
    Ghorbel RE; Maktouf S; Massoud EB; Bejar S; Chaabouni SE
    Appl Biochem Biotechnol; 2009 Apr; 157(1):50-60. PubMed ID: 18626582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and properties of alpha-amylase from Bacillus sp. BKL20.
    Kubrak OI; Storey JM; Storey KB; Lushchak VI
    Can J Microbiol; 2010 Apr; 56(4):279-88. PubMed ID: 20453894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization.
    Božić N; Slavić MŠ; Gavrilović A; Vujčić Z
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1353-60. PubMed ID: 24385152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.