BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34064654)

  • 1. Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance.
    van Heusden C; Grubb BR; Button B; Lazarowski ER
    Life (Basel); 2021 May; 11(5):. PubMed ID: 34064654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic receptors in airway hydration.
    Lazarowski ER; Boucher RC
    Biochem Pharmacol; 2021 May; 187():114387. PubMed ID: 33358825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways.
    Okada SF; Ribeiro CM; Sesma JI; Seminario-Vidal L; Abdullah LH; van Heusden C; Lazarowski ER; Boucher RC
    Am J Respir Cell Mol Biol; 2013 Nov; 49(5):814-20. PubMed ID: 23763446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.
    Sesma JI; Kreda SM; Okada SF; van Heusden C; Moussa L; Jones LC; O'Neal WK; Togawa N; Hiasa M; Moriyama Y; Lazarowski ER
    Am J Physiol Cell Physiol; 2013 May; 304(10):C976-84. PubMed ID: 23467297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.
    Button B; Picher M; Boucher RC
    J Physiol; 2007 Apr; 580(Pt. 2):577-92. PubMed ID: 17317749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition.
    Åstrand AB; Hemmerling M; Root J; Wingren C; Pesic J; Johansson E; Garland AL; Ghosh A; Tarran R
    Am J Physiol Lung Cell Mol Physiol; 2015 Jan; 308(1):L22-32. PubMed ID: 25361567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of second hand smoke on airway secretion and mucociliary clearance.
    Liu Y; Di YP
    Front Physiol; 2012; 3():342. PubMed ID: 22973232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells.
    Kreda SM; Okada SF; van Heusden CA; O'Neal W; Gabriel S; Abdullah L; Davis CW; Boucher RC; Lazarowski ER
    J Physiol; 2007 Oct; 584(Pt 1):245-59. PubMed ID: 17656429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration.
    Webster MJ; Tarran R
    Curr Top Membr; 2018; 81():293-335. PubMed ID: 30243435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia.
    Tarran R; Trout L; Donaldson SH; Boucher RC
    J Gen Physiol; 2006 May; 127(5):591-604. PubMed ID: 16636206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models.
    Mall MA
    J Aerosol Med Pulm Drug Deliv; 2008 Mar; 21(1):13-24. PubMed ID: 18518828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology and pathophysiology of human airway mucus.
    Hill DB; Button B; Rubinstein M; Boucher RC
    Physiol Rev; 2022 Oct; 102(4):1757-1836. PubMed ID: 35001665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanosensitive ATP release maintains proper mucus hydration of airways.
    Button B; Okada SF; Frederick CB; Thelin WR; Boucher RC
    Sci Signal; 2013 Jun; 6(279):ra46. PubMed ID: 23757023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and functional properties of airway secretions in cystic fibrosis--therapeutic approaches.
    Puchelle E; de Bentzmann S; Zahm JM
    Respiration; 1995; 62 Suppl 1():2-12. PubMed ID: 7792436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BPIFB1 loss alters airway mucus properties and diminishes mucociliary clearance.
    Donoghue LJ; Markovetz MR; Morrison CB; Chen G; McFadden KM; Sadritabrizi T; Gutay MI; Kato T; Rogers TD; Snead JY; Livraghi-Butrico A; Button B; Ehre C; Grubb BR; Hill DB; Kelada SNP
    Am J Physiol Lung Cell Mol Physiol; 2023 Dec; 325(6):L765-L775. PubMed ID: 37847709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics.
    Kunzelmann K; Mall M
    Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching.
    Derichs N; Jin BJ; Song Y; Finkbeiner WE; Verkman AS
    FASEB J; 2011 Jul; 25(7):2325-32. PubMed ID: 21427214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways.
    Donaldson SH; Lazarowski ER; Picher M; Knowles MR; Stutts MJ; Boucher RC
    Mol Med; 2000 Nov; 6(11):969-82. PubMed ID: 11147574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucociliary dysfunction in HIV and smoked substance abuse.
    Chinnapaiyan S; Unwalla HJ
    Front Microbiol; 2015; 6():1052. PubMed ID: 26528246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis.
    Picher M; Burch LH; Boucher RC
    J Biol Chem; 2004 May; 279(19):20234-41. PubMed ID: 14993227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.