These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 34064712)
1. LiDAR Point Cloud Generation for SLAM Algorithm Evaluation. Sobczak Ł; Filus K; Domański A; Domańska J Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064712 [TBL] [Abstract][Full Text] [Related]
2. Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving. Cho S; Kim C; Park J; Sunwoo M; Jo K Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086561 [TBL] [Abstract][Full Text] [Related]
3. Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications. Adnan M; Slavic G; Martin Gomez D; Marcenaro L; Regazzoni C Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447967 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Lidar Actuator System Influence on the Quality of Dense 3D Point Cloud Obtained with SLAM. Trybała P; Szrek J; Dębogórski B; Ziętek B; Blachowski J; Wodecki J; Zimroz R Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679518 [TBL] [Abstract][Full Text] [Related]
5. Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong. Wen W; Hsu LT; Zhang G Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441784 [TBL] [Abstract][Full Text] [Related]
6. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation. Ilci V; Toth C Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046232 [TBL] [Abstract][Full Text] [Related]
7. Real-Time 3D Object Detection and SLAM Fusion in a Low-Cost LiDAR Test Vehicle Setup. Fernandes D; Afonso T; Girão P; Gonzalez D; Silva A; Névoa R; Novais P; Monteiro J; Melo-Pinto P Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960468 [TBL] [Abstract][Full Text] [Related]
8. A Novel Approach to Global Positioning System Accuracy Assessment, Verified on LiDAR Alignment of One Million Kilometers at a Continent Scale, as a Foundation for Autonomous DRIVING Safety Analysis. Bedkowski J; Nowak H; Kubiak B; Studzinski W; Janeczek M; Karas S; Kopaczewski A; Makosiej P; Koszuk J; Pec M; Miksa K Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502581 [TBL] [Abstract][Full Text] [Related]
9. A Review of Dynamic Object Filtering in SLAM Based on 3D LiDAR. Peng H; Zhao Z; Wang L Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276337 [TBL] [Abstract][Full Text] [Related]
10. Building a Real-Time Testing Platform for Unmanned Ground Vehicles with UDP Bridge. Sobczak Ł; Filus K; Domańska J; Domański A Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366191 [TBL] [Abstract][Full Text] [Related]
11. A Survey on Ground Segmentation Methods for Automotive LiDAR Sensors. Gomes T; Matias D; Campos A; Cunha L; Roriz R Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679414 [TBL] [Abstract][Full Text] [Related]
12. Sensor Fusion-Based Approach to Eliminating Moving Objects for SLAM in Dynamic Environments. Dang X; Rong Z; Liang X Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401421 [TBL] [Abstract][Full Text] [Related]
13. LiDAR-Based Sensor Fusion SLAM and Localization for Autonomous Driving Vehicles in Complex Scenarios. Dai K; Sun B; Wu G; Zhao S; Ma F; Zhang Y; Wu J J Imaging; 2023 Feb; 9(2):. PubMed ID: 36826971 [TBL] [Abstract][Full Text] [Related]
14. Real-time depth completion based on LiDAR-stereo for autonomous driving. Wei M; Zhu M; Zhang Y; Wang J; Sun J Front Neurorobot; 2023; 17():1124676. PubMed ID: 37144086 [TBL] [Abstract][Full Text] [Related]
15. Pole-Like Object Extraction and Pole-Aided GNSS/IMU/LiDAR-SLAM System in Urban Area. Liu T; Chang L; Niu X; Liu J Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322184 [TBL] [Abstract][Full Text] [Related]
16. Research on orchard navigation method based on fusion of 3D SLAM and point cloud positioning. Xia Y; Lei X; Pan J; Chen L; Zhang Z; Lyu X Front Plant Sci; 2023; 14():1207742. PubMed ID: 37434606 [TBL] [Abstract][Full Text] [Related]
17. Design and experiments with a SLAM system for low-density canopy environments in greenhouses based on an improved Cartographer framework. Tan H; Zhao X; Zhai C; Fu H; Chen L; Yang M Front Plant Sci; 2024; 15():1276799. PubMed ID: 38362453 [TBL] [Abstract][Full Text] [Related]
18. Cost Effective Mobile Mapping System for Color Point Cloud Reconstruction. Peng CW; Hsu CC; Wang WY Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207617 [TBL] [Abstract][Full Text] [Related]
19. Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM. Lagüela S; Dorado I; Gesto M; Arias P; González-Aguilera D; Lorenzo H Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29498715 [TBL] [Abstract][Full Text] [Related]
20. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies. Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]