BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34064807)

  • 1. Evaluating the Accuracy of Virtual Reality Trackers for Computing Spatiotemporal Gait Parameters.
    Guaitolini M; Petros FE; Prado A; Sabatini AM; Agrawal SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH; Brey RH; Robb RA; Bang TJ; Kaufman KR
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overground gait training using virtual reality aimed at gait symmetry.
    Shideler BL; Martelli D; Prado A; Agrawal SK
    Hum Mov Sci; 2021 Apr; 76():102770. PubMed ID: 33636570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics.
    Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH
    PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking in an immersive virtual reality.
    Menegoni F; Albani G; Bigoni M; Priano L; Trotti C; Galli M; Mauro A
    Stud Health Technol Inform; 2009; 144():72-6. PubMed ID: 19592734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of Virtual Reality Experience on Biomechanical Gait Parameters in Children with Cerebral Palsy: A Scoping Review.
    Lohss R; Odorizzi M; Sangeux M; Hasler CC; Viehweger E
    Dev Neurorehabil; 2023; 26(6-7):377-388. PubMed ID: 37537745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent Validity of the Zeno Walkway for Measuring Spatiotemporal Gait Parameters in Older Adults.
    Vallabhajosula S; Humphrey SK; Cook AJ; Freund JE
    J Geriatr Phys Ther; 2019; 42(3):E42-E50. PubMed ID: 29286982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Three Motion Capture-Based Algorithms for Spatiotemporal Gait Characteristics: How Do Algorithms Affect Accuracy and Precision of Clinical Outcomes?
    Caron-Laramée A; Walha R; Boissy P; Gaudreault N; Zelovic N; Lebel K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of adding a virtual reality environment to different modes of treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Training in Virtual Reality: Short-Term Effects of Different Virtual Manipulation Techniques in Parkinson's Disease.
    Janeh O; Fründt O; Schönwald B; Gulberti A; Buhmann C; Gerloff C; Steinicke F; Pötter-Nerger M
    Cells; 2019 May; 8(5):. PubMed ID: 31064145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Immersive Virtual Reality Platform to Enhance Walking Ability of Children with Acquired Brain Injuries.
    Biffi E; Beretta E; Cesareo A; Maghini C; Turconi AC; Reni G; Strazzer S
    Methods Inf Med; 2017 Mar; 56(2):119-126. PubMed ID: 28116417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis.
    De Ridder R; Lebleu J; Willems T; De Blaiser C; Detrembleur C; Roosen P
    J Sport Rehabil; 2019 Aug; 28(6):. PubMed ID: 30747572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway.
    Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B
    J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients.
    Schülein S; Barth J; Rampp A; Rupprecht R; Eskofier BM; Winkler J; Gaßmann KG; Klucken J
    J Neuroeng Rehabil; 2017 Feb; 14(1):18. PubMed ID: 28241769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Walking-Related Everyday Life Tasks of Children with Gait Disorders in a Virtual Reality Setup With a Physical Setup: Cross-Sectional Noninferiority Study.
    Rhiel S; Kläy A; Keller U; van Hedel HJA; Ammann-Reiffer C
    JMIR Serious Games; 2024 Mar; 12():e49550. PubMed ID: 38498048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The validity of spatiotemporal gait analysis using dual laser range sensors: a cross-sectional study.
    Iwai M; Koyama S; Tanabe S; Osawa S; Takeda K; Motoya I; Sakurai H; Kanada Y; Kawamura N
    Arch Physiother; 2019; 9():3. PubMed ID: 30820352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.