These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34065260)

  • 1. Surface Modification of Spruce and Fir Sawn-Timber by Charring in the Traditional Japanese Method-Yakisugi.
    Ebner DH; Barbu MC; Klaushofer J; Čermák P
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption-Related Characteristics of Surface Charred Spruce Wood.
    Kymäläinen M; Turunen H; Čermák P; Hautamäki S; Rautkari L
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30355998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Characteristics of One-Sided Charred Beech Wood.
    Machová D; Oberle A; Zárybnická L; Dohnal J; Šeda V; Dömény J; Vacenovská V; Kloiber M; Pěnčík J; Tippner J; Čermák P
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34066234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decay Resistance of Surface Carbonized Wood.
    Kymäläinen M; Belt T; Seppäläinen H; Rautkari L
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of the Heat Flux of the Infrared Heater on the Charring Rate of Spruce Wood.
    Párničanová A; Zachar M; Kačíková D
    Polymers (Basel); 2024 Sep; 16(18):. PubMed ID: 39339121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Weathering of Contact-Charred Wood-The Effect of Modification Duration, Wood Species and Material Density.
    Kymäläinen M; Sjökvist T; Dömény J; Rautkari L
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Physical and Water Sorption Characteristics of Three Solid Woods after One-Sided Surface Charring.
    Tenorio C; Moya R; Tencio L
    ACS Omega; 2024 Jul; 9(26):28093-28104. PubMed ID: 38973876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (
    Zachar M; Čabalová I; Kačíková D; Zacharová L
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: implications for the quantitative determination of charcoal in soils.
    Reeves JB; McCarty GW; Rutherford DW; Wershaw RL
    Appl Spectrosc; 2008 Feb; 62(2):182-9. PubMed ID: 18284794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental campaign on the mechanical properties of Canadian small clear spruce-pine-fir wood: Experimental procedures, data curation, and data description.
    Feujofack K BV; Loss C
    Data Brief; 2023 Jun; 48():109064. PubMed ID: 37006398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sawn Timber Tree Species Recognition Method Based on AM-SPPResNet.
    Ding F; Liu Y; Zhuang Z; Wang Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative studies on charcoalification: Physical and chemical changes of charring wood.
    Li G; Gao L; Liu F; Qiu M; Dong G
    Fundam Res; 2024 Jan; 4(1):113-122. PubMed ID: 38933840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Model for Timber Fire Exposure with Moving Boundary.
    Šulc S; Šmilauer V; Wald F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33530522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape.
    Frank A; Sperisen C; Howe GT; Brang P; Walthert L; St Clair JB; Heiri C
    Ecology; 2017 Jan; 98(1):211-227. PubMed ID: 28052396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood.
    Wu Y; Yao C; Hu Y; Zhu X; Qing Y; Wu Q
    Materials (Basel); 2014 Jan; 7(2):637-652. PubMed ID: 28788480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols.
    Chow JC; Watson JG; Chen LW; Arnott WP; Moosmüller H; Fung K
    Environ Sci Technol; 2004 Aug; 38(16):4414-22. PubMed ID: 15382872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of terpenes from fir wood during its long-term use and in thermal treatment.
    Kačík F; Veľková V; Šmíra P; Nasswettrová A; Kačíková D; Reinprecht L
    Molecules; 2012 Aug; 17(8):9990-9. PubMed ID: 22910123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Charring Flame-Retardant Behavior of Polyimide and Melamine Polyphosphate in Glass Fiber-Reinforced Polyamide 66.
    Tang W; Cao Y; Qian L; Chen Y; Qiu Y; Xu B; Xin F
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of High-Frequency Pressing of Spruce Laminated Timber Bonded with Casein Adhesives.
    Herzog A; Kerschbaumer T; Schwarzenbrunner R; Barbu MC; Petutschnigg A; Tudor EM
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.