These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34065320)

  • 1. Influence of Laser Energy Input and Shielding Gas Flow on Evaporation Fume during Laser Powder Bed Fusion of Zn Metal.
    Qin Y; Liu J; Chen Y; Wen P; Zheng Y; Tian Y; Voshage M; Schleifenbaum JH
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys.
    Meng F; Du Y
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications.
    Lietaert K; Zadpoor AA; Sonnaert M; Schrooten J; Weber L; Mortensen A; Vleugels J
    Acta Biomater; 2020 Jul; 110():289-302. PubMed ID: 32348917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion.
    Liu J; Wei B; Chang H; Li J; Yang G
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Additive Manufacturing of Zinc Targeting for Biomedical Application.
    Zhou Y; Wang J; Yang Y; Yang M; Zheng H; Xie D; Wang D; Shen L
    Int J Bioprint; 2022; 8(1):501. PubMed ID: 35187283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process.
    Haase F; Siemers C; Rösler J
    Front Bioeng Biotechnol; 2023; 11():1260925. PubMed ID: 37744262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L.
    Ur Rehman A; Pitir F; Salamci MU
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion.
    Böhm C; Werz M; Weihe S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review.
    Guan J; Wang Q
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion.
    Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter Optimization for Printing Ti6Al4V-Alloy Patient-Customized Orthopaedic Implants by Laser Powder Bed Fusion Using Physio-mechanical Properties and Biological Evaluations.
    Gaur B; Ghyar R; Bhallamudi R
    Indian J Orthop; 2022 May; 56(5):797-804. PubMed ID: 35547343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion.
    Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis.
    Bär F; Berger L; Jauer L; Kurtuldu G; Schäublin R; Schleifenbaum JH; Löffler JF
    Acta Biomater; 2019 Oct; 98():36-49. PubMed ID: 31132536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Laser Powder Bed Fusion Parameters for IN-738LC by Response Surface Method.
    Vilanova M; Escribano-García R; Guraya T; San Sebastian M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation of Temperature Characteristics and Graphitization Mechanism of Diamond in Laser Powder Bed Fusion.
    Chen Y; Zhang S; Liu J; Zhang W; Ma Q; Wu X; Guo S; Cui Y; Li X; Zheng B; Cui L
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation.
    Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing of biodegradable metals: Current research status and future perspectives.
    Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH
    Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.