BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34065411)

  • 61. Mini-review: advances in 3D bioprinting of vascularized constructs.
    Bova L; Billi F; Cimetta E
    Biol Direct; 2020 Nov; 15(1):22. PubMed ID: 33138851
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy.
    Sharifi M; Bai Q; Babadaei MMN; Chowdhury F; Hassan M; Taghizadeh A; Derakhshankhah H; Khan S; Hasan A; Falahati M
    J Control Release; 2021 May; 333():91-106. PubMed ID: 33774120
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 65. N-acetylcysteine amide, a promising antidote for acetaminophen toxicity.
    Khayyat A; Tobwala S; Hart M; Ercal N
    Toxicol Lett; 2016 Jan; 241():133-42. PubMed ID: 26602168
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
    Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A
    Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
    Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A
    Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 3D neural tissue models: From spheroids to bioprinting.
    Zhuang P; Sun AX; An J; Chua CK; Chew SY
    Biomaterials; 2018 Feb; 154():113-133. PubMed ID: 29120815
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3D bioprinted neural tissue constructs for spinal cord injury repair.
    Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z
    Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
    Schwartz R; Malpica M; Thompson GL; Miri AK
    J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sacrificial Bioprinting of a Mammary Ductal Carcinoma Model.
    Duchamp M; Liu T; van Genderen AM; Kappings V; Oklu R; Ellisen LW; Zhang YS
    Biotechnol J; 2019 Oct; 14(10):e1700703. PubMed ID: 30963705
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering.
    Kilic Bektas C; Hasirci V
    Biomater Sci; 2019 Dec; 8(1):438-449. PubMed ID: 31746842
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects.
    Nulty J; Freeman FE; Browe DC; Burdis R; Ahern DP; Pitacco P; Lee YB; Alsberg E; Kelly DJ
    Acta Biomater; 2021 May; 126():154-169. PubMed ID: 33705989
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.
    Jeon H; Kang K; Park SA; Kim WD; Paik SS; Lee SH; Jeong J; Choi D
    Gut Liver; 2017 Jan; 11(1):121-128. PubMed ID: 27559001
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Editor's Highlight: Modeling Compound-Induced Fibrogenesis In Vitro Using Three-Dimensional Bioprinted Human Liver Tissues.
    Norona LM; Nguyen DG; Gerber DA; Presnell SC; LeCluyse EL
    Toxicol Sci; 2016 Dec; 154(2):354-367. PubMed ID: 27605418
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.
    Dai X; Ma C; Lan Q; Xu T
    Biofabrication; 2016 Oct; 8(4):045005. PubMed ID: 27725343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.