These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34065455)

  • 1. Modified
    Liao D; Shi W; Gao J; Deng B; Yu R
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34065455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated carbon from
    Zeng B; Zeng X; Hu L; Huang L; Huang Y; Zhou Y; Liu G; Huang W
    RSC Adv; 2024 Jan; 14(6):4252-4263. PubMed ID: 38292269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesopore structure in Camellia Oleifera shell.
    Wang Q; Chang S; Tan Y; Hu J
    Protoplasma; 2019 Jul; 256(4):1145-1151. PubMed ID: 30953174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Fenton's reagent to regenerate activated carbon saturated with organochloro compounds.
    Toledo LC; Silva AC; Augusti R; Lago RM
    Chemosphere; 2003 Mar; 50(8):1049-54. PubMed ID: 12531711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High mesoporosity phosphorus-containing biochar fabricated from Camellia oleifera shells: Impressive tetracycline adsorption performance and promotion of pyrophosphate-like surface functional groups (C-O-P bond).
    Liu Q; Li D; Cheng H; Cheng J; Du K; Hu Y; Chen Y
    Bioresour Technol; 2021 Jun; 329():124922. PubMed ID: 33713899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced adsorption of Pb(II) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells.
    Fan Y; Wang H; Deng L; Wang Y; Kang D; Li C; Chen H
    Environ Res; 2020 Dec; 191():110030. PubMed ID: 32827523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of uranium(VI) from aqueous solution by Camellia oleifera shell-based activated carbon: adsorption equilibrium, kinetics, and thermodynamics.
    Yi Z; Liu J; Zeng R; Liu X; Long J; Huang B
    Water Sci Technol; 2020 Dec; 82(11):2592-2602. PubMed ID: 33339811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.
    Zhang L; He Y; Zhu Y; Liu Y; Wang X
    Bioresour Technol; 2018 Feb; 249():536-541. PubMed ID: 29080517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on biomolecules in extractives of
    Xie Y; Ge S; Jiang S; Liu Z; Chen L; Wang L; Chen J; Qin L; Peng W
    Saudi J Biol Sci; 2018 Feb; 25(2):234-236. PubMed ID: 29472770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.
    Zhai Y; Xu B; Zhu Y; Qing R; Peng C; Wang T; Li C; Zeng G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():449-56. PubMed ID: 26838871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Camellia oleifera Abel shells as a new biosorbent to remove methylene blue from aqueous solutions.
    Lu Y; Lin L; You R; Wu Z
    Water Sci Technol; 2011; 64(7):1566-71. PubMed ID: 22179657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage.
    Wang Q; Hu J; Yang T; Chang S
    Protoplasma; 2021 Mar; 258(2):361-370. PubMed ID: 33106960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell.
    Zhang J; Zhang T; Ying Y; Yao X
    Bioresour Technol; 2021 Jun; 330():124990. PubMed ID: 33756181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical structure of Camellia oleifera shell.
    Hu J; Shi Y; Liu Y; Chang S
    Protoplasma; 2018 Nov; 255(6):1777-1784. PubMed ID: 29868989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Chinese
    Quan W; Wang A; Gao C; Li C
    Front Chem; 2022; 10():921246. PubMed ID: 35685348
    [No Abstract]   [Full Text] [Related]  

  • 17. Production of xylooligosaccharides from Camellia oleifera Abel fruit shell using a shell-based solid acid catalyst.
    Xu W; Zhang W; Han M; Zhang F; Lei F; Cheng X; Ning R; Wang K; Ji L; Jiang J
    Bioresour Technol; 2022 Dec; 365():128173. PubMed ID: 36283662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.
    Sramala I; Pinket W; Pongwan P; Jarussophon S; Kasemwong K
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27136528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of molecularly imprinted polymers using acrylamide-β-cyclodextrin as a cofunctional monomer for the specific capture of tea saponins from the defatted cake extract of Camellia oleifera.
    Guo H; Xiong J; Ma W; Wu M; Yan L; Li K; Liu Y
    J Sep Sci; 2016 Nov; 39(22):4439-4448. PubMed ID: 27734586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride.
    You Y; Zhang X; Li P; Lei F; Jiang J
    Bioresour Technol; 2020 Jun; 306():123131. PubMed ID: 32197191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.