These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34065483)

  • 1. Tritordeum: Creating a New Crop Species-The Successful Use of Plant Genetic Resources.
    Ávila CM; Rodríguez-Suárez C; Atienza SG
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34065483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT).
    Castillo A; Ramírez MC; Martín AC; Kilian A; Martín A; Atienza SG
    BMC Plant Biol; 2013 Jun; 13():87. PubMed ID: 23725040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit.
    Atienza SG; Martín AC; Martín A
    Genome; 2007 Nov; 50(11):994-1000. PubMed ID: 18059545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tritordeum as an Innovative Alternative to Wheat: A Comparative Digestion Study on Bread.
    Nitride C; D'Auria G; Dente A; Landolfi V; Picariello G; Mamone G; Blandino M; Romano R; Ferranti P
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total Hordeum chilense DNA as probe.
    Gonzalez MJ; Cabrera A
    Genome; 1999 Dec; 42(6):1194-200. PubMed ID: 10659787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of reciprocal crosses on agronomic performance of tritordeum.
    Atienza SG; Ramírez MC; Martín A; Ballesteros J
    Genetika; 2007 Aug; 43(8):1046-9. PubMed ID: 17958303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cytogenetic analysis of durum wheat x tritordeum hybrids.
    Lima-Brito J; Guedes-Pinto H; Harrison GE; Heslop-Harrison JS
    Genome; 1997 Jun; 40(3):362-9. PubMed ID: 18464834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH.
    Prieto P; Ramírez MC; Ballesteros J; Cabrera A
    Hereditas; 2001; 135(2-3):171-4. PubMed ID: 12152330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for exploitation of disease resistance from Hordeum chilense in cultivated cereals.
    Rubiales D; Niks RE; Carver TL; Ballesteros J; Martín A
    Hereditas; 2001; 135(2-3):161-9. PubMed ID: 12152329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum.
    Hernández P; Laurie DA; Martín A; Snape JW
    Theor Appl Genet; 2002 Mar; 104(4):735-739. PubMed ID: 12582681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediation of a GDSL Esterase/Lipase in Carotenoid Esterification in Tritordeum Suggests a Common Mechanism of Carotenoid Esterification in Triticeae Species.
    Requena-Ramírez MD; Atienza SG; Hornero-Méndez D; Rodríguez-Suárez C
    Front Plant Sci; 2020; 11():592515. PubMed ID: 33746990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tritordeum: Promising Cultivars to Improve Health.
    De Caro S; Venezia A; Di Stasio L; Danzi D; Pignone D; Mamone G; Iacomino G
    Foods; 2024 Feb; 13(5):. PubMed ID: 38472773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.
    Cabo S; Ferreira L; Carvalho A; Martins-Lopes P; Martín A; Lima-Brito JE
    J Appl Genet; 2014 Aug; 55(3):307-12. PubMed ID: 24733248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and chromosome location of repeated DNA sequences in Hordeum species and in the amphiploid tritordeum (x Tritordeum Ascherson et Graebner).
    Ferrer E; Loarce Y; Hueros G
    Genome; 1995 Oct; 38(5):850-7. PubMed ID: 8536999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions.
    Atienza SG; Ballesteros J; Martín A; Hornero-Méndez D
    J Agric Food Chem; 2007 May; 55(10):4244-51. PubMed ID: 17439153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.).
    Marín S; Martín A; Barro F
    Genome; 2008 Aug; 51(8):580-8. PubMed ID: 18650948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.
    Lachman J; Hejtmánková A; Orsák M; Popov M; Martinek P
    Food Chem; 2018 Feb; 240():725-735. PubMed ID: 28946335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding.
    Martín A; Cabrera A
    Cytogenet Genome Res; 2005; 109(1-3):378-84. PubMed ID: 15753600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses.
    Delgado A; Carvalho A; Martín AC; Martín A; Lima-Brito J
    J Genet; 2017 Jun; 96(2):e13-e23. PubMed ID: 28674217
    [No Abstract]   [Full Text] [Related]  

  • 20. Distribution of bioactive compounds in pearled fractions of tritordeum.
    Giordano D; Reyneri A; Locatelli M; Coïsson JD; Blandino M
    Food Chem; 2019 Dec; 301():125228. PubMed ID: 31377613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.