These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34065495)
1. Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Liu T; Zhang X Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065495 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome and metabolome analysis reveal glutathione metabolic network and functional genes underlying blue and red-light mediation in maize seedling leaf. Liu T; Zhang X BMC Plant Biol; 2021 Dec; 21(1):593. PubMed ID: 34906076 [TBL] [Abstract][Full Text] [Related]
3. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.). Hou Y; Zeng W; Ao C; Huang J J Biotechnol; 2024 Mar; 383():39-54. PubMed ID: 38346451 [TBL] [Abstract][Full Text] [Related]
4. New insights into the response of maize to fluctuations in the light environment. Qu J; Gou X; Zhang W; Li T; Xue J; Guo D; Xu S Mol Genet Genomics; 2021 May; 296(3):615-629. PubMed ID: 33630129 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Sekhon RS; Childs KL; Santoro N; Foster CE; Buell CR; de Leon N; Kaeppler SM Plant Physiol; 2012 Aug; 159(4):1730-44. PubMed ID: 22732243 [TBL] [Abstract][Full Text] [Related]
6. Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis. Lakshmanan M; Lim SH; Mohanty B; Kim JK; Ha SH; Lee DY Plant Physiol; 2015 Dec; 169(4):3002-20. PubMed ID: 26453433 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Hwang SG; Kim KH; Lee BM; Moon JC Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814 [TBL] [Abstract][Full Text] [Related]
8. Regulatory modules controlling early shade avoidance response in maize seedlings. Wang H; Wu G; Zhao B; Wang B; Lang Z; Zhang C; Wang H BMC Genomics; 2016 Mar; 17():269. PubMed ID: 27030359 [TBL] [Abstract][Full Text] [Related]
9. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Sun G; Xia M; Li J; Ma W; Li Q; Xie J; Bai S; Fang S; Sun T; Feng X; Guo G; Niu Y; Hou J; Ye W; Ma J; Guo S; Wang H; Long Y; Zhang X; Zhang J; Zhou H; Li B; Liu J; Zou C; Wang H; Huang J; Galbraith DW; Song CP Plant Cell; 2022 Apr; 34(5):1890-1911. PubMed ID: 35166333 [TBL] [Abstract][Full Text] [Related]
10. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640 [TBL] [Abstract][Full Text] [Related]
11. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize. Yu F; Tan Z; Fang T; Tang K; Liang K; Qiu F Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121334 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
13. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Gupta S; Gupta V; Singh V; Varadwaj PK Genes Genomics; 2018 Sep; 40(9):973-990. PubMed ID: 30155715 [TBL] [Abstract][Full Text] [Related]
14. G-protein couples MAPK cascade through maize heterotrimeric Gβ subunit. Chen Y; Wang S; Du W; Wang Y; Wu Y; Li W; Ding Y; Wang Y Plant Cell Rep; 2022 Aug; 41(8):1763-1774. PubMed ID: 35737098 [TBL] [Abstract][Full Text] [Related]
15. Exploration of the Effects of Different Blue LED Light Intensities on Flavonoid and Lipid Metabolism in Tea Plants via Transcriptomics and Metabolomics. Wang P; Chen S; Gu M; Chen X; Chen X; Yang J; Zhao F; Ye N Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610479 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. Kim SB; Van den Broeck L; Karre S; Choi H; Christensen SA; Wang GF; Jo Y; Cho WK; Balint-Kurti P Mol Plant Pathol; 2021 Apr; 22(4):465-479. PubMed ID: 33641256 [TBL] [Abstract][Full Text] [Related]
17. Exploration of the Effect of Blue Light on Functional Metabolite Accumulation in Longan Embryonic Calli via RNA Sequencing. Li H; Lyu Y; Chen X; Wang C; Yao D; Ni S; Lin Y; Chen Y; Zhang Z; Lai Z Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669555 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms governing shade responses in maize. Shi Q; Kong F; Zhang H; Jiang Y; Heng S; Liang R; Ma L; Liu J; Lu X; Li P; Li G Biochem Biophys Res Commun; 2019 Aug; 516(1):112-119. PubMed ID: 31200955 [TBL] [Abstract][Full Text] [Related]
19. An integrated "omics" approach to the characterization of maize (Zea mays L.) mutants deficient in the expression of two genes encoding cytosolic glutamine synthetase. Amiour N; Imbaud S; Clément G; Agier N; Zivy M; Valot B; Balliau T; Quilleré I; Tercé-Laforgue T; Dargel-Graffin C; Hirel B BMC Genomics; 2014 Nov; 15(1):1005. PubMed ID: 25410248 [TBL] [Abstract][Full Text] [Related]
20. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. Wang XJ; Zhang X; Yang JT; Wang ZX Plant J; 2018 Mar; 93(6):1007-1016. PubMed ID: 29356248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]