BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 34065499)

  • 1. Clinical Characteristics of
    Weisschuh N; Mazzola P; Bertrand M; Haack TB; Wissinger B; Kohl S; Stingl K
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The identification of a RNA splice variant in TULP1 in two siblings with early-onset photoreceptor dystrophy.
    Verbakel SK; Fadaie Z; Klevering BJ; van Genderen MM; Feenstra I; Cremers FPM; Hoyng CB; Roosing S
    Mol Genet Genomic Med; 2019 Jun; 7(6):e660. PubMed ID: 30950243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homozygosity mapping and whole-genome sequencing reveals a deep intronic PROM1 mutation causing cone-rod dystrophy by pseudoexon activation.
    Mayer AK; Rohrschneider K; Strom TM; Glöckle N; Kohl S; Wissinger B; Weisschuh N
    Eur J Hum Genet; 2016 Mar; 24(3):459-62. PubMed ID: 26153215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypical Characteristics of POC1B-Associated Retinopathy in Japanese Cohort: Cone Dystrophy With Normal Funduscopic Appearance.
    Kameya S; Fujinami K; Ueno S; Hayashi T; Kuniyoshi K; Ideta R; Kikuchi S; Kubota D; Yoshitake K; Katagiri S; Sakuramoto H; Kominami T; Terasaki H; Yang L; Fujinami-Yokokawa Y; Liu X; Arno G; Pontikos N; Miyake Y; Iwata T; Tsunoda K;
    Invest Ophthalmol Vis Sci; 2019 Aug; 60(10):3432-3446. PubMed ID: 31390656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and genotypic features of
    Alzahem TA; AlTheeb A; Ba-Abbad R
    Ophthalmic Genet; 2024 Feb; 45(1):72-77. PubMed ID: 37246743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization.
    Di Scipio M; Tavares E; Deshmukh S; Audo I; Green-Sanderson K; Zubak Y; Zine-Eddine F; Pearson A; Vig A; Tang CY; Mollica A; Karas J; Tumber A; Yu CW; Billingsley G; Wilson MD; Zeitz C; Héon E; Vincent A
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):36. PubMed ID: 32881472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel splice site mutation of CDHR1 in a consanguineous Israeli Christian Arab family segregating autosomal recessive cone-rod dystrophy.
    Cohen B; Chervinsky E; Jabaly-Habib H; Shalev SA; Briscoe D; Ben-Yosef T
    Mol Vis; 2012; 18():2915-21. PubMed ID: 23233793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-Linked Retinitis Pigmentosa Caused by Non-Canonical Splice Site Variants in
    Kortüm F; Kieninger S; Mazzola P; Kohl S; Wissinger B; Prokisch H; Stingl K; Weisschuh N
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the Genetic Diagnosis Yield in Inherited Retinal Dystrophies: Assigning Pathogenicity to Novel Non-canonical Splice Site Variants.
    Toulis V; Cortés-González V; Castro-Miró M; Sallum JF; Català-Mora J; Villanueva-Mendoza C; Ciccioli M; Gonzàlez-Duarte R; Valero R; Marfany G
    Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32244552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy.
    Roosing S; Lamers IJ; de Vrieze E; van den Born LI; Lambertus S; Arts HH; ; Peters TA; Hoyng CB; Kremer H; Hetterschijt L; Letteboer SJ; van Wijk E; Roepman R; den Hollander AI; Cremers FP
    Am J Hum Genet; 2014 Aug; 95(2):131-42. PubMed ID: 25018096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All reported non-canonical splice site variants in GLA cause aberrant splicing.
    Okada E; Horinouchi T; Yamamura T; Aoto Y; Suzuki R; Ichikawa Y; Tanaka Y; Masuda C; Kitakado H; Kondo A; Sakakibara N; Ishiko S; Nagano C; Ishimori S; Usui J; Yamagata K; Matsuo M; Nozu K
    Clin Exp Nephrol; 2023 Sep; 27(9):737-746. PubMed ID: 37254000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Case of cone dystrophy with normal fundus appearance associated with biallelic POC1B variants.
    Kominami A; Ueno S; Kominami T; Nakanishi A; Ito Y; Fujinami K; Tsunoda K; Hayashi T; Kikuchi S; Kameya S; Iwata T; Terasaki H
    Ophthalmic Genet; 2018 Apr; 39(2):255-262. PubMed ID: 29220607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa.
    Chen Y; Huang L; Jiao X; Riazuddin S; Riazuddin SA; Fielding Hetmancik J
    Hum Genomics; 2018 Jul; 12(1):35. PubMed ID: 29973277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel intronic mutation of
    Tatour Y; Tamaiev J; Shamaly S; Colombo R; Bril E; Rabinowitz T; Yaakobi A; Mezer E; Leibu R; Tiosano B; Shomron N; Chowers I; Banin E; Sharon D; Ben-Yosef T
    Mol Vis; 2019; 25():155-164. PubMed ID: 30820151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy.
    Eidinger O; Leibu R; Newman H; Rizel L; Perlman I; Ben-Yosef T
    Mol Vis; 2015; 21():1295-306. PubMed ID: 26702251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.
    Sangermano R; Garanto A; Khan M; Runhart EH; Bauwens M; Bax NM; van den Born LI; Khan MI; Cornelis SS; Verheij JBGM; Pott JR; Thiadens AAHJ; Klaver CCW; Puech B; Meunier I; Naessens S; Arno G; Fakin A; Carss KJ; Raymond FL; Webster AR; Dhaenens CM; Stöhr H; Grassmann F; Weber BHF; Hoyng CB; De Baere E; Albert S; Collin RWJ; Cremers FPM
    Genet Med; 2019 Aug; 21(8):1751-1760. PubMed ID: 30643219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel splice donor site mutation in MERTK gene associated with retinitis pigmentosa.
    Brea-Fernández AJ; Pomares E; Brión MJ; Marfany G; Blanco MJ; Sánchez-Salorio M; González-Duarte R; Carracedo A
    Br J Ophthalmol; 2008 Oct; 92(10):1419-23. PubMed ID: 18815424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minigene Splicing Assays and Long-Read Sequencing to Unravel Pathogenic Deep-Intronic Variants in
    Tamayo A; Núñez-Moreno G; Ruiz C; Plaisancie J; Damian A; Moya J; Chassaing N; Calvas P; Ayuso C; Minguez P; Corton M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.