These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34065797)

  • 1. Exploration of Driver Posture Monitoring Using Pressure Sensors with Lower Resolution.
    Zhao M; Beurier G; Wang H; Wang X
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver posture monitoring in highly automated vehicles using pressure measurement.
    Zhao M; Beurier G; Wang H; Wang X
    Traffic Inj Prev; 2021; 22(4):278-283. PubMed ID: 33739223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning.
    Roh J; Park HJ; Lee KJ; Hyeong J; Kim S; Lee B
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29329261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-Time Posture Classification: Combining Pressure and Distance Sensors.
    Jeong H; Park W
    IEEE J Biomed Health Inform; 2021 May; 25(5):1805-1813. PubMed ID: 33044937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconstrained Monitoring Method for Heartbeat Signals Measurement using Pressure Sensors Array.
    Jiang Y; Deng S; Sun H; Qi Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a sitting posture monitoring system for children using pressure sensors: An application of convolutional neural network.
    Lee Y; Kim YM; Pyo S; Yun MH
    Work; 2022; 72(1):351-366. PubMed ID: 35431221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pervasive Lying Posture Tracking.
    Alinia P; Samadani A; Milosevic M; Ghasemzadeh H; Parvaneh S
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urethane-Foam-Embedded Silicon Pressure Sensors including Stress-Concentration Packaging Structure for Driver Posture Monitoring.
    Takamatsu S; Sato S; Itoh T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Proposal of Implementation of Sitting Posture Monitoring System for Wheelchair Utilizing Machine Learning Methods.
    Ahmad J; Sidén J; Andersson H
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving Behavior during Takeover Request of Autonomous Vehicle: Effect of Driver Postures.
    Muto K; Oikawa S; Matsui Y; Hirose T
    Behav Sci (Basel); 2022 Oct; 12(11):. PubMed ID: 36354394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of prolonged sitting on body-seat contact pressures among quay crane operators: A pilot study.
    Pau M; Leban B; Fadda P; Fancello G; Nussbaum MA
    Work; 2016 Nov; 55(3):605-611. PubMed ID: 27814319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Development of a Sitting Posture Recognition System.
    Fragkiadakis E; Dalakleidi KV; Nikita KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3364-3367. PubMed ID: 31946602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posture and Physical Activity Detection: Impact of Number of Sensors and Feature Type.
    Tang QU; John D; Thapa-Chhetry B; Arguello DJ; Intille S
    Med Sci Sports Exerc; 2020 Aug; 52(8):1834-1845. PubMed ID: 32079910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cost self-made pressure distribution sensors for ergonomic chair: Are they suitable for posture monitoring?
    Martinaitis A; Daunoraviciene K
    Technol Health Care; 2018; 26(S2):655-663. PubMed ID: 29843288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke.
    Pohl J; Ryser A; Veerbeek JM; Verheyden G; Vogt JE; Luft AR; Easthope CA
    Front Physiol; 2022; 13():933987. PubMed ID: 36225292
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of sitting comfortability of driver's seat by contact shape.
    Yamazaki N
    Ergonomics; 1992; 35(5-6):677-92. PubMed ID: 1612063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Driver's Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques.
    Kim IH; Bong JH; Park J; Park S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.