BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34065938)

  • 1. Mechanism of Stability and Transport of Chitosan-Stabilized Nano Zero-Valent Iron in Saturated Porous Media.
    Huang D; Ren Z; Li X; Jing Q
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34065938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.
    Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of polymer stabilized nano-scale zero-valent iron in porous media.
    Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE
    J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L; Janouškovcová P; Kubal M
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nZVI stability on mobility in porous media.
    Kocur CM; O'Carroll DM; Sleep BE
    J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17200-9. PubMed ID: 27215990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media.
    Saha AK; Sinha A; Pasupuleti S
    Environ Technol; 2019 May; 40(12):1543-1556. PubMed ID: 29319455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media.
    Gong L; Shi S; Lv N; Xu W; Ye Z; Gao B; O'Carroll DM; He F
    Sci Total Environ; 2020 May; 718():137427. PubMed ID: 32105934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation.
    Chen B; Lv N; Xu W; Gong L; Sun T; Liang L; Gao B; He F
    Chemosphere; 2023 Feb; 313():137512. PubMed ID: 36495971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.
    Mystrioti C; Papassiopi N; Xenidis A; Dermatas D; Chrysochoou M
    J Hazard Mater; 2015 Jan; 281():64-69. PubMed ID: 24953183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.
    Basnet M; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S; Micić V; Hofmann T
    Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe
    Babakhani P; Fagerlund F; Shamsai A; Lowry GV; Phenrat T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7180-7199. PubMed ID: 26300356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.