BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 34065948)

  • 1. The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis.
    Bertels LK; Fernández Murillo L; Heinisch JJ
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34065948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production.
    Kobayashi Y; Sahara T; Suzuki T; Kamachi S; Matsushika A; Hoshino T; Ohgiya S; Kamagata Y; Fujimori KE
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):879-891. PubMed ID: 28181081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus.
    Zhang B; Ren L; Zeng S; Zhang S; Xu D; Zeng X; Li F
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7991-8006. PubMed ID: 32776206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae.
    Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE
    AMB Express; 2018 Aug; 8(1):139. PubMed ID: 30151682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway.
    Jacoby J; Hollenberg CP; Heinisch JJ
    Mol Microbiol; 1993 Nov; 10(4):867-76. PubMed ID: 7934848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.
    Stincone A; Prigione A; Cramer T; Wamelink MM; Campbell K; Cheung E; Olin-Sandoval V; Grüning NM; Krüger A; Tauqeer Alam M; Keller MA; Breitenbach M; Brindle KM; Rabinowitz JD; Ralser M
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):927-63. PubMed ID: 25243985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.
    Walfridsson M; Hallborn J; Penttilä M; Keränen S; Hahn-Hägerdal B
    Appl Environ Microbiol; 1995 Dec; 61(12):4184-90. PubMed ID: 8534086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the pentose phosphate pathway in cancer.
    Jiang P; Du W; Wu M
    Protein Cell; 2014; 5(8):592-602. PubMed ID: 25015087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast
    Rodicio R; Schmitz HP; Heinisch JJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.
    Campbell K; Vowinckel J; Keller MA; Ralser M
    Antioxid Redox Signal; 2016 Apr; 24(10):543-7. PubMed ID: 26596469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis.
    Zhu Z; Umehara T; Tsujita N; Kawai T; Goto M; Cheng B; Zeng W; Shimada M
    Free Radic Biol Med; 2020 Nov; 159():44-53. PubMed ID: 32745767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM.
    Alvarez GM; Casiró S; Gutnisky C; Dalvit GC; Sutton-McDowall ML; Thompson JG; Cetica PD
    Theriogenology; 2016 Dec; 86(9):2096-2106. PubMed ID: 27597631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.