These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 34065948)

  • 1. The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis.
    Bertels LK; Fernández Murillo L; Heinisch JJ
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34065948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production.
    Kobayashi Y; Sahara T; Suzuki T; Kamachi S; Matsushika A; Hoshino T; Ohgiya S; Kamagata Y; Fujimori KE
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):879-891. PubMed ID: 28181081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus.
    Zhang B; Ren L; Zeng S; Zhang S; Xu D; Zeng X; Li F
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7991-8006. PubMed ID: 32776206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae.
    Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE
    AMB Express; 2018 Aug; 8(1):139. PubMed ID: 30151682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway.
    Jacoby J; Hollenberg CP; Heinisch JJ
    Mol Microbiol; 1993 Nov; 10(4):867-76. PubMed ID: 7934848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.
    Stincone A; Prigione A; Cramer T; Wamelink MM; Campbell K; Cheung E; Olin-Sandoval V; Grüning NM; Krüger A; Tauqeer Alam M; Keller MA; Breitenbach M; Brindle KM; Rabinowitz JD; Ralser M
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):927-63. PubMed ID: 25243985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.
    Walfridsson M; Hallborn J; Penttilä M; Keränen S; Hahn-Hägerdal B
    Appl Environ Microbiol; 1995 Dec; 61(12):4184-90. PubMed ID: 8534086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the pentose phosphate pathway in cancer.
    Jiang P; Du W; Wu M
    Protein Cell; 2014; 5(8):592-602. PubMed ID: 25015087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast
    Rodicio R; Schmitz HP; Heinisch JJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes.
    Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I
    Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.
    Campbell K; Vowinckel J; Keller MA; Ralser M
    Antioxid Redox Signal; 2016 Apr; 24(10):543-7. PubMed ID: 26596469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis.
    Zhu Z; Umehara T; Tsujita N; Kawai T; Goto M; Cheng B; Zeng W; Shimada M
    Free Radic Biol Med; 2020 Nov; 159():44-53. PubMed ID: 32745767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM.
    Alvarez GM; Casiró S; Gutnisky C; Dalvit GC; Sutton-McDowall ML; Thompson JG; Cetica PD
    Theriogenology; 2016 Dec; 86(9):2096-2106. PubMed ID: 27597631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.