BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34066154)

  • 21. Activity of Demethylation Inhibitor Fungicide Metconazole on Chinese
    Duan Y; Tao X; Zhao H; Xiao X; Li M; Wang J; Zhou M
    Plant Dis; 2019 May; 103(5):929-937. PubMed ID: 30880557
    [No Abstract]   [Full Text] [Related]  

  • 22. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.
    Zhang L; Li B; Zhang Y; Jia X; Zhou M
    Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limonene formulation exhibited potential application in the control of mycelial growth and deoxynivalenol production in
    Jian Y; Chen X; Ma H; Zhang C; Luo Y; Jiang J; Yin Y
    Front Microbiol; 2023; 14():1161244. PubMed ID: 37125209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence.
    Wang C; Wang Y; Zhang L; Yin Z; Liang Y; Chen L; Zou S; Dong H
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating Useful Properties of Four
    Colombo EM; Kunova A; Gardana C; Pizzatti C; Simonetti P; Cortesi P; Saracchi M; Pasquali M
    Toxins (Basel); 2020 Aug; 12(9):. PubMed ID: 32878002
    [No Abstract]   [Full Text] [Related]  

  • 26. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight.
    Talas F; Würschum T; Reif JC; Parzies HK; Miedaner T
    BMC Genet; 2012 Mar; 13():14. PubMed ID: 22409447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low pH regulates the production of deoxynivalenol by Fusarium graminearum.
    Gardiner DM; Osborne S; Kazan K; Manners JM
    Microbiology (Reading); 2009 Sep; 155(Pt 9):3149-3156. PubMed ID: 19497949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of
    Mao X; Li L; Abubakar YS; Li Y; Luo Z; Chen M; Zheng W; Wang Z; Zheng H
    J Agric Food Chem; 2024 May; 72(17):9637-9646. PubMed ID: 38642053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum.
    Gunnaiah R; Kushalappa AC
    Plant Physiol Biochem; 2014 Oct; 83():40-50. PubMed ID: 25084325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of Wheat Fusarium Head Blight by Heat-Stable Antifungal Factor (HSAF) from
    Zhao Y; Cheng C; Jiang T; Xu H; Chen Y; Ma Z; Qian G; Liu F
    Plant Dis; 2019 Jun; 103(6):1286-1292. PubMed ID: 30995421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum.
    Audenaert K; Callewaert E; Höfte M; De Saeger S; Haesaert G
    BMC Microbiol; 2010 Apr; 10():112. PubMed ID: 20398299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubule-assisted mechanism for toxisome assembly in Fusarium graminearum.
    Zhou Z; Duan Y; Zhang J; Lu F; Zhu Y; Shim WB; Zhou M
    Mol Plant Pathol; 2021 Feb; 22(2):163-174. PubMed ID: 33201575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biocontrol of
    Abbas A; Yli-Mattila T
    Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Potential of Peroxidases Extracted from the Spent Mushroom (
    Tso KH; Lumsangkul C; Ju JC; Fan YK; Chiang HI
    Toxins (Basel); 2021 Jan; 13(1):. PubMed ID: 33478106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis.
    Li C; Liu C
    Environ Pollut; 2022 Aug; 307():119553. PubMed ID: 35640724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of Fusarium graminearum in harvested grain by real-time polymerase chain reaction to assess efficacies of fungicides on fusarium head blight, deoxynivalenol contamination, and yield of winter wheat.
    Zhang YJ; Fan PS; Zhang X; Chen CJ; Zhou MG
    Phytopathology; 2009 Jan; 99(1):95-100. PubMed ID: 19055440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat.
    Nicolli CP; Machado FJ; Spolti P; Del Ponte EM
    Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of wheat (Triticum aestivum L.) resistance, Fusarium graminearum DNA content, strain potential toxin production, and disease severity on deoxynivalenol content.
    Fan P; Gu K; Wu J; Zhou M; Chen C
    J Basic Microbiol; 2019 Nov; 59(11):1105-1111. PubMed ID: 31497881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria.
    Morimura H; Ito M; Yoshida S; Koitabashi M; Tsushima S; Camagna M; Chiba S; Takemoto D; Kawakita K; Sato I
    Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32560237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum.
    Liu N; Fan F; Qiu D; Jiang L
    Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.