BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34066265)

  • 1. Human Activity Recognition for People with Knee Osteoarthritis-A Proof-of-Concept.
    Tan JS; Beheshti BK; Binnie T; Davey P; Caneiro JP; Kent P; Smith A; O'Sullivan P; Campbell A
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Knee Joint Kinematics from Wearable Sensor Data in People with Knee Osteoarthritis and Clinical Considerations for Future Machine Learning Models.
    Tan JS; Tippaya S; Binnie T; Davey P; Napier K; Caneiro JP; Kent P; Smith A; O'Sullivan P; Campbell A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional movement assessment by means of inertial sensor technology to discriminate between movement behaviour of healthy controls and persons with knee osteoarthritis.
    van der Straaten R; Wesseling M; Jonkers I; Vanwanseele B; Bruijnes AKBD; Malcorps J; Bellemans J; Truijen J; De Baets L; Timmermans A
    J Neuroeng Rehabil; 2020 May; 17(1):65. PubMed ID: 32430036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables.
    Kwon H; Abowd GD; Plötz T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automation of Functional Mobility Assessments at Home Using a Multimodal Sensor System Integrating Inertial Measurement Units and Computer Vision (IMU-Vision).
    Spangler J; Mitjans M; Collimore A; Gomes-Pires A; Levine DM; Tron R; Awad LN
    Phys Ther; 2024 Feb; 104(2):. PubMed ID: 38159106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a Wearable System for Lower Extremity Assessment.
    Zhang H; Song Y; Li C; Dou Y; Wang D; Wu Y; Chen X; Liu D
    Orthop Surg; 2023 Nov; 15(11):2911-2917. PubMed ID: 37545175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of Wearable Sensors for Assessing Gait and Chair Stand Function at Home in People With Knee Osteoarthritis.
    Rose MJ; Neogi T; Friscia B; Torabian KA; LaValley MP; Gheller M; Adamowicz L; Georgiev P; Viktrup L; Demanuele C; Wacnik PW; Kumar D
    Arthritis Care Res (Hoboken); 2023 Sep; 75(9):1939-1948. PubMed ID: 36734316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.