These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34066265)

  • 21. Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction.
    Tseng YH; Wen CY
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying varus thrust in knee osteoarthritis using wearable inertial sensors: A proof of concept.
    Costello KE; Eigenbrot S; Geronimo A; Guermazi A; Felson DT; Richards J; Kumar D
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105232. PubMed ID: 33202314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An IMU-Based Wearable System for Respiratory Rate Estimation in Static and Dynamic Conditions.
    Angelucci A; Aliverti A
    Cardiovasc Eng Technol; 2023 Jun; 14(3):351-363. PubMed ID: 36849621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.
    Müller PN; Müller AJ; Achenbach P; Göbel S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Activity Prediction Based on Forecasted IMU Activity Signals by Sequence-to-Sequence Deep Neural Networks.
    Jaramillo IE; Chola C; Jeong JG; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Independent and sensitive gait parameters for objective evaluation in knee and hip osteoarthritis using wearable sensors.
    Boekesteijn RJ; Smolders JMH; Busch VJJF; Geurts ACH; Smulders K
    BMC Musculoskelet Disord; 2021 Mar; 22(1):242. PubMed ID: 33658006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the External Knee Adduction Moment during Gait Using an Inertial Measurement Unit in Patients with Knee Osteoarthritis.
    Iwama Y; Harato K; Kobayashi S; Niki Y; Ogihara N; Matsumoto M; Nakamura M; Nagura T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Time Sensor-Embedded Neural Network for Human Activity Recognition.
    Shakerian A; Douet V; Shoaraye Nejati A; Landry R
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait classification of knee osteoarthritis patients using shoe-embedded internal measurement units sensor.
    Raza A; Sekiguchi Y; Yaguchi H; Honda K; Fukushi K; Huang C; Ihara K; Nozaki Y; Nakahara K; Izumi SI; Ebihara S
    Clin Biomech (Bristol, Avon); 2024 Jun; 117():106285. PubMed ID: 38901396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data.
    Khan YA; Imaduddin S; Singh YP; Wajid M; Usman M; Abbas M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study.
    Islam R; Bennasar M; Nicholas K; Button K; Holland S; Mulholland P; Price B; Al-Amri M
    JMIR Mhealth Uhealth; 2020 Jun; 8(6):e17872. PubMed ID: 32543446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.