These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34066421)

  • 61. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance.
    Gautier H; Massot C; Stevens R; Sérino S; Génard M
    Ann Bot; 2009 Feb; 103(3):495-504. PubMed ID: 19033285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato.
    Burgos E; Belen De Luca M; Diouf I; de Haro LA; Albert E; Sauvage C; Tao ZJ; Bermudez L; Asís R; Nesi AN; Matringe M; Bréhélin C; Guiraud T; Ferrand C; Atienza I; Jorly J; Mauxion JP; Baldet P; Fernie AR; Quadrana L; Rothan C; Causse M; Carrari F
    Plant J; 2021 Feb; 105(4):907-923. PubMed ID: 33179365
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of ascorbic acid biosynthesis using a simple transient gene expression system in tomato fruit protoplasts.
    Sakamoto S; Fujikawa Y; Esaka M
    Biosci Biotechnol Biochem; 2013; 77(3):673-5. PubMed ID: 23470746
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.
    Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z
    Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development.
    Alba R; Payton P; Fei Z; McQuinn R; Debbie P; Martin GB; Tanksley SD; Giovannoni JJ
    Plant Cell; 2005 Nov; 17(11):2954-65. PubMed ID: 16243903
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit.
    Chen Y; Shu P; Wang R; Du X; Xie Y; Du K; Deng H; Li M; Zhang Y; Grierson D; Liu M
    Plant Sci; 2021 Dec; 313():111063. PubMed ID: 34763857
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in Solanum lycopersicum.
    Cheng F; Yin LL; Zhou J; Xia XJ; Shi K; Yu JQ; Zhou YH; Foyer CH
    J Exp Bot; 2016 Mar; 67(6):1919-33. PubMed ID: 26834179
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.).
    Alós E; Rodrigo MJ; Zacarías L
    Plant Sci; 2013 Jun; 207():2-11. PubMed ID: 23602093
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gene expression and promoter analysis of a novel tomato aldo-keto reductase in response to environmental stresses.
    Suekawa M; Fujikawa Y; Inada S; Murano A; Esaka M
    J Plant Physiol; 2016 Aug; 200():35-44. PubMed ID: 27337067
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Is monodehydroascorbate reductase activity in leaf tissue critical for the maintenance of yield in tomato?
    Truffault V; Riqueau G; Garchery C; Gautier H; Stevens RG
    J Plant Physiol; 2018 Mar; 222():1-8. PubMed ID: 29287283
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening.
    Ma N; Feng H; Meng X; Li D; Yang D; Wu C; Meng Q
    BMC Plant Biol; 2014 Dec; 14():351. PubMed ID: 25491370
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses.
    Rosales MA; Cervilla LM; Sánchez-Rodríguez E; Rubio-Wilhelmi Mdel M; Blasco B; Ríos JJ; Soriano T; Castilla N; Romero L; Ruiz JM
    J Sci Food Agric; 2011 Jan; 91(1):152-62. PubMed ID: 20853276
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.
    Truffault V; Fry SC; Stevens RG; Gautier H
    Plant J; 2017 Mar; 89(5):996-1008. PubMed ID: 27888536
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis.
    Ye J; Hu T; Yang C; Li H; Yang M; Ijaz R; Ye Z; Zhang Y
    PLoS One; 2015; 10(7):e0130885. PubMed ID: 26133783
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations.
    Stevens R; Buret M; Duffé P; Garchery C; Baldet P; Rothan C; Causse M
    Plant Physiol; 2007 Apr; 143(4):1943-53. PubMed ID: 17277090
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life.
    Mehta RA; Cassol T; Li N; Ali N; Handa AK; Mattoo AK
    Nat Biotechnol; 2002 Jun; 20(6):613-8. PubMed ID: 12042867
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit.
    Mellidou I; Chagné D; Laing WA; Keulemans J; Davey MW
    Plant Physiol; 2012 Nov; 160(3):1613-29. PubMed ID: 23001142
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of melatonin in tomato stress response, growth and development.
    Xie Q; Zhang Y; Cheng Y; Tian Y; Luo J; Hu Z; Chen G
    Plant Cell Rep; 2022 Aug; 41(8):1631-1650. PubMed ID: 35575808
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes.
    Wang L; Li QT; Lei Q; Feng C; Zheng X; Zhou F; Li L; Liu X; Wang Z; Kong J
    BMC Plant Biol; 2017 Dec; 17(1):246. PubMed ID: 29258418
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.
    Ding Y; Zhao J; Nie Y; Fan B; Wu S; Zhang Y; Sheng J; Shen L; Zhao R; Tang X
    J Agric Food Chem; 2016 Nov; 64(43):8200-8206. PubMed ID: 27754653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.