These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34066480)

  • 1. Enzymatic Management of pH in White Wines.
    Botezatu A; Elizondo C; Bajec M; Miller R
    Molecules; 2021 May; 26(9):. PubMed ID: 34066480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine.
    Röcker J; Schmitt M; Pasch L; Ebert K; Grossmann M
    Food Chem; 2016 Nov; 210():660-70. PubMed ID: 27211694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of grape maturity on the foaming properties of base wines and sparkling wines (Cava).
    Esteruelas M; González-Royo E; Kontoudakis N; Orte A; Cantos A; Canals JM; Zamora F
    J Sci Food Agric; 2015 Aug; 95(10):2071-80. PubMed ID: 25242464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foam aptitude of trepat and monastrell red varieties in cava elaboration. 2. Second fermentation and aging.
    Girbau-Solà T; López-Barajas M; López-Tamames E; Buxaderas S
    J Agric Food Chem; 2002 Sep; 50(20):5600-4. PubMed ID: 12236684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pomace limits tannin retention in Frontenac wines.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2019 Mar; 277():438-447. PubMed ID: 30502168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety.
    Gajek M; Pawlaczyk A; Szynkowska-Jozwik MI
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33406611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolics composition and antioxidant activity of wine produced from spine grape (Vitis davidii Foex) and Cherokee rose (Rosa laevigata Michx.) fruits from South China.
    Meng J; Fang Y; Gao J; Qiao L; Zhang A; Guo Z; Qin M; Huang J; Hu Y; Zhuang X
    J Food Sci; 2012 Jan; 77(1):C8-14. PubMed ID: 22181048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The production and application of enzymes related to the quality of fruit wine.
    Yang H; Cai G; Lu J; Gómez Plaza E
    Crit Rev Food Sci Nutr; 2021; 61(10):1605-1615. PubMed ID: 32423236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments.
    Schwarz M; Picazo-Bacete JJ; Winterhalter P; Hermosín-Gutiérrez I
    J Agric Food Chem; 2005 Oct; 53(21):8372-81. PubMed ID: 16218690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of phenolic profile of white wines treated with enzymes.
    Scutarașu EC; Luchian CE; Vlase L; Colibaba LC; Gheldiu AM; Cotea VV
    Food Chem; 2021 Mar; 340():127910. PubMed ID: 32882475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum.
    Varela C; Barker A; Tran T; Borneman A; Curtin C
    Int J Food Microbiol; 2017 Jul; 252():1-9. PubMed ID: 28436828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a Schizosaccharomyces pombe mutant to reduce the content in gluconic acid of must obtained from rotten grapes.
    Peinado RA; Maestre O; Mauricio JC; Moreno JJ
    J Agric Food Chem; 2009 Mar; 57(6):2368-77. PubMed ID: 19243129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of high-quality dehydrated grape in vinification to produce dry red wines.
    Mencarelli F; D'onofrio C; Bucci S; Baccelloni S; Cini R; Pica G; Bellincontro A
    Food Chem; 2021 Feb; 338():127623. PubMed ID: 32861132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must.
    Peinado RA; Moreno JJ; Medina M; Mauricio JC
    J Agric Food Chem; 2005 Feb; 53(4):1017-21. PubMed ID: 15713014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Factors and Seasonality Affect the Concentration of Rotundone in Vitis vinifera L. cv. Shiraz Wine.
    Zhang P; Howell K; Krstic M; Herderich M; Barlow EW; Fuentes S
    PLoS One; 2015; 10(7):e0133137. PubMed ID: 26176692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice.
    Minnaar PP; Jolly NP; Paulsen V; Du Plessis HW; Van Der Rijst M
    Int J Food Microbiol; 2017 Sep; 257():232-237. PubMed ID: 28697384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ochratoxin A in wine and grape juice sold in Canada.
    Ng W; Mankotia M; Pantazopoulos P; Neil RJ; Scott PM
    Food Addit Contam; 2004 Oct; 21(10):971-81. PubMed ID: 15712522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the pinking phenomenon of white wines.
    Andrea-Silva J; Cosme F; Ribeiro LF; Moreira AS; Malheiro AC; Coimbra MA; Domingues MR; Nunes FM
    J Agric Food Chem; 2014 Jun; 62(24):5651-9. PubMed ID: 24857316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.).
    Liu X; Li J; Tian Y; Liao M; Zhang Z
    PLoS One; 2016; 11(3):e0151276. PubMed ID: 26974974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.