These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34066590)

  • 1. Quantification of Blood Flow Velocity in the Human Conjunctival Microvessels Using Deep Learning-Based Stabilization Algorithm.
    Jo HC; Jeong H; Lee J; Na KS; Kim DY
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EVA: Fully automatic hemodynamics assessment system for the bulbar conjunctival microvascular network.
    Yun Z; Xu Q; Wang G; Jin S; Lin G; Feng Q; Yuan J
    Comput Methods Programs Biomed; 2022 Apr; 216():106631. PubMed ID: 35123347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Assessment of Hemodynamics in the Conjunctival Microvasculature Network.
    Khansari MM; Wanek J; Felder AE; Camardo N; Shahidi M
    IEEE Trans Med Imaging; 2016 Feb; 35(2):605-11. PubMed ID: 26452274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement variability of the bulbar conjunctival microvasculature in healthy subjects using functional slit lamp biomicroscopy (FSLB).
    Xu Z; Jiang H; Tao A; Wu S; Yan W; Yuan J; Liu C; DeBuc DC; Wang J
    Microvasc Res; 2015 Sep; 101():15-9. PubMed ID: 26092682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated quantification and evaluation of motion artifact on coronary CT angiography images.
    Ma H; Gros E; Baginski SG; Laste ZR; Kulkarni NM; Okerlund D; Schmidt TG
    Med Phys; 2018 Dec; 45(12):5494-5508. PubMed ID: 30339290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional slit lamp biomicroscopy for imaging bulbar conjunctival microvasculature in contact lens wearers.
    Jiang H; Zhong J; DeBuc DC; Tao A; Xu Z; Lam BL; Liu C; Wang J
    Microvasc Res; 2014 Mar; 92():62-71. PubMed ID: 24444784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature.
    Wang L; Yuan J; Jiang H; Yan W; Cintrón-Colón HR; Perez VL; DeBuc DC; Feuer WJ; Wang J
    Eye Contact Lens; 2016 Mar; 42(2):135-40. PubMed ID: 25839347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation.
    Oksuz I; Clough JR; Ruijsink B; Anton EP; Bustin A; Cruz G; Prieto C; King AP; Schnabel JA
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4001-4010. PubMed ID: 32746141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional slit lamp biomicroscopy metrics correlate with cardiovascular risk.
    Karanam VC; Tamariz L; Batawi H; Wang J; Galor A
    Ocul Surf; 2019 Jan; 17(1):64-69. PubMed ID: 30253248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Real-Time Conjunctival Microvasculature Image Stabilization.
    Felder AE; Mercurio C; Wanek J; Ansari R; Shahidi M
    IEEE Trans Med Imaging; 2016 Jul; 35(7):1670-5. PubMed ID: 26863649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion Correction in Optical Resolution Photoacoustic Microscopy.
    Zhao H; Chen N; Li T; Zhang J; Lin R; Gong X; Song L; Liu Z; Liu C
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2139-2150. PubMed ID: 30668495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cardiac-driven liver movements with filtered harmonic phase image representation, optical flow quantification, and motion amplification.
    Hahn S; Absil J; Debeir O; Metens T
    Magn Reson Med; 2019 Apr; 81(4):2788-2798. PubMed ID: 30485536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrospective respiratory motion correction for navigated cine velocity mapping.
    Baltes C; Kozerke S; Atkinson D; Boesiger P
    J Cardiovasc Magn Reson; 2004; 6(4):785-92. PubMed ID: 15646881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
    Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S
    Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of the conjunctival microcirculation using a smartphone and slit-lamp biomicroscope.
    Brennan PF; McNeil AJ; Jing M; Awuah A; Finlay DD; Blighe K; McLaughlin JAD; Wang R; Moore J; Nesbit MA; Trucco E; Spence MS; Moore TCB
    Microvasc Res; 2019 Nov; 126():103907. PubMed ID: 31330150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrospective correction of motion-affected MR images using deep learning frameworks.
    Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S
    Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound Deep Learning for Wall Segmentation and Near-Wall Blood Flow Measurement.
    Park JH; Lee SJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2022-2032. PubMed ID: 32746163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification.
    Johansson A; Balter JM; Cao Y
    Med Phys; 2018 Oct; 45(10):4529-4540. PubMed ID: 30098044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.