These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34066785)

  • 1. Opportunities and Possibilities of Developing an Advanced Precision Spraying System for Tree Fruits.
    Mahmud MS; Zahid A; He L; Martin P
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34066785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patch spraying: future role of electronics in limiting pesticide use.
    Miller PC
    Pest Manag Sci; 2003 May; 59(5):566-74. PubMed ID: 12741525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance characteristics of broad-leaf crop canopy in air-assisted spray field and their effects on droplet deposition.
    Wu S; Liu J; Zhen J; Lei X; Chen Y
    Front Plant Sci; 2022; 13():924749. PubMed ID: 35909749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy.
    Jiang Y; Yang Z; Xu X; Shen D; Jiang T; Xie B; Duan J
    Front Plant Sci; 2023; 14():1079703. PubMed ID: 36743480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-volume precision spray for plant pest control using profile variable rate spraying and ultrasonic detection.
    Nan Y; Zhang H; Zheng J; Yang K; Ge Y
    Front Plant Sci; 2022; 13():1042769. PubMed ID: 36704161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy spray application technology in specialty crops: a slowly evolving landscape.
    Warneke BW; Zhu H; Pscheidt JW; Nackley LL
    Pest Manag Sci; 2021 May; 77(5):2157-2164. PubMed ID: 33135282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticide dose based on canopy characteristics in apple trees: Reducing environmental risk by reducing the amount of pesticide while maintaining pest and disease control efficacy.
    Xun L; Garcia-Ruiz F; Fabregas FX; Gil E
    Sci Total Environ; 2022 Jun; 826():154204. PubMed ID: 35235850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses.
    Grella M; Miranda-Fuentes A; Marucco P; Balsari P
    Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment.
    Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG
    Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies.
    Miranda-Fuentes A; Rodríguez-Lizana A; Gil E; Agüera-Vega J; Gil-Ribes JA
    Sci Total Environ; 2015 Dec; 537():250-9. PubMed ID: 26282759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control.
    Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrical vortex air-assisted spraying system for improving droplet deposition on rice.
    Qiu W; Guo H; Cao Y; Li X; Wu J; Chen Y; Yu H; Zhang Z
    Pest Manag Sci; 2022 Oct; 78(10):4037-4047. PubMed ID: 35638857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV.
    Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y
    PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction.
    Fritz BK; Hoffmann WC
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the influence of air speed and liquid flow rate on the droplet size and homogeneity in pneumatic spraying.
    Balsari P; Grella M; Marucco P; Matta F; Miranda-Fuentes A
    Pest Manag Sci; 2019 Feb; 75(2):366-379. PubMed ID: 29920925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model construction and validation of airflow velocity attenuation through pear tree canopies.
    Zhang F; Sun H; Qiu W; Lv X; Chen Y; Zhao G
    Front Plant Sci; 2022; 13():1026503. PubMed ID: 36426153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spraying direction on the exposure to handlers with hand-pumped knapsack sprayer in maize field.
    Li Z; Liu W; Wu C; She D
    Ecotoxicol Environ Saf; 2019 Apr; 170():107-111. PubMed ID: 30529608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications.
    Desmarteau DA; Ritter AM; Hendley P; Guevara MW
    Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrochemical spray drift; assessment and mitigation--a review.
    Felsot AS; Unsworth JB; Linders JB; Roberts G; Rautman D; Harris C; Carazo E
    J Environ Sci Health B; 2011; 46(1):1-23. PubMed ID: 20981606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.