These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34066922)

  • 21. Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish.
    Catron TR; Keely SP; Brinkman NE; Zurlinden TJ; Wood CE; Wright JR; Phelps D; Wheaton E; Kvasnicka A; Gaballah S; Lamendella R; Tal T
    Toxicol Sci; 2019 Feb; 167(2):468-483. PubMed ID: 30321396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways.
    Guo E; Zhao L; Li Z; Chen L; Li J; Lu F; Wang F; Lu K; Liu Y
    J Hazard Mater; 2024 Aug; 474():134779. PubMed ID: 38850935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change.
    Yang Y; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 470-471():1184-8. PubMed ID: 24246941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish.
    Chen L; Guo Y; Hu C; Lam PKS; Lam JCW; Zhou B
    Environ Pollut; 2018 Mar; 234():307-317. PubMed ID: 29190539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community.
    Li G; Xiong J; Wong PK; An T
    Environ Pollut; 2016 Jan; 208(Pt B):796-802. PubMed ID: 26602791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bisphenol A Removal by the Fungus
    Jasińska A; Soboń A; Różalska S; Średnicka P
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.
    Zhang G; Wang Y; Jiang J; Yang S
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):770-775. PubMed ID: 28361461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502.
    Masuda M; Yamasaki Y; Ueno S; Inoue A
    Extremophiles; 2007 Mar; 11(2):355-62. PubMed ID: 17160346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system.
    Mohan H; Lim JM; Lee SW; Cho M; Park YJ; Seralathan KK; Oh BT
    Chemosphere; 2020 Jun; 249():126083. PubMed ID: 32045753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome analysis and cytochrome P450 monooxygenase reveal the molecular mechanism of Bisphenol A degradation by Pseudomonas putida strain YC-AE1.
    Eltoukhy A; Jia Y; Lamraoui I; Abo-Kadoum MA; Atta OM; Nahurira R; Wang J; Yan Y
    BMC Microbiol; 2022 Dec; 22(1):294. PubMed ID: 36482332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate of Bisphenol A in Terrestrial and Aquatic Environments.
    Im J; Löffler FE
    Environ Sci Technol; 2016 Aug; 50(16):8403-16. PubMed ID: 27401879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system.
    Wang Y; Rui M; Nie Y; Lu G
    J Hazard Mater; 2018 Aug; 355():111-118. PubMed ID: 29778027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway.
    Ogata Y; Goda S; Toyama T; Sei K; Ike M
    Environ Sci Technol; 2013 Jan; 47(2):1017-23. PubMed ID: 23215053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Bisphenol A-Assimilating Microorganisms in Mixed Microbial Communities Using
    Sathyamoorthy S; Hoar C; Chandran K
    Environ Sci Technol; 2018 Aug; 52(16):9128-9135. PubMed ID: 30040394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model.
    Javurek AB; Spollen WG; Johnson SA; Bivens NJ; Bromert KH; Givan SA; Rosenfeld CS
    Gut Microbes; 2016 Nov; 7(6):471-485. PubMed ID: 27624382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice.
    Diamante G; Cely I; Zamora Z; Ding J; Blencowe M; Lang J; Bline A; Singh M; Lusis AJ; Yang X
    Environ Int; 2021 Jan; 146():106260. PubMed ID: 33221593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacteria-mediated bisphenol A degradation.
    Zhang W; Yin K; Chen L
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5681-9. PubMed ID: 23681588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling.
    Lau JT; Whelan FJ; Herath I; Lee CH; Collins SM; Bercik P; Surette MG
    Genome Med; 2016 Jul; 8(1):72. PubMed ID: 27363992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis.
    Desdoits-Lethimonier C; Lesné L; Gaudriault P; Zalko D; Antignac JP; Deceuninck Y; Platel C; Dejucq-Rainsford N; Mazaud-Guittot S; Jégou B
    Hum Reprod; 2017 Jul; 32(7):1465-1473. PubMed ID: 28482050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.