BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34067034)

  • 1. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings.
    Rajaraman S; Zamzmi G; Folio L; Alderson P; Antani S
    Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34067034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs.
    Rajaraman S; Cohen G; Spear L; Folio L; Antani S
    PLoS One; 2022; 17(3):e0265691. PubMed ID: 35358235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Semantic Segmentation of Tuberculosis-Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations.
    Rajaraman S; Folio LR; Dimperio J; Alderson PO; Antani SK
    Diagnostics (Basel); 2021 Mar; 11(4):. PubMed ID: 33808240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers.
    Rajaraman S; Zamzmi G; Folio LR; Antani S
    Front Genet; 2022; 13():864724. PubMed ID: 35281798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.
    Showkatian E; Salehi M; Ghaffari H; Reiazi R; Sadighi N
    Pol J Radiol; 2022; 87():e118-e124. PubMed ID: 35280947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models.
    Guo R; Passi K; Jain CK
    Front Artif Intell; 2020; 3():583427. PubMed ID: 33733221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
    Rajaraman S; Antani SK
    IEEE Access; 2020; 8():27318-27326. PubMed ID: 32257736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine and Deep Learning for Tuberculosis Detection on Chest X-Rays: Systematic Literature Review.
    Hansun S; Argha A; Liaw ST; Celler BG; Marks GB
    J Med Internet Res; 2023 Jul; 25():e43154. PubMed ID: 37399055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refining dataset curation methods for deep learning-based automated tuberculosis screening.
    Kim TK; Yi PH; Hager GD; Lin CT
    J Thorac Dis; 2020 Sep; 12(9):5078-5085. PubMed ID: 33145084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study.
    Ren G; Xiao H; Lam SK; Yang D; Li T; Teng X; Qin J; Cai J
    Quant Imaging Med Surg; 2021 Dec; 11(12):4807-4819. PubMed ID: 34888191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks.
    Ul Abideen Z; Ghafoor M; Munir K; Saqib M; Ullah A; Zia T; Tariq SA; Ahmed G; Zahra A
    IEEE Access; 2020; 8():22812-22825. PubMed ID: 32391238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble.
    Khatibi T; Shahsavari A; Farahani A
    Phys Eng Sci Med; 2021 Mar; 44(1):291-311. PubMed ID: 33616887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-rays.
    Rajaraman S; Siegelman J; Alderson PO; Folio LS; Folio LR; Antani SK
    IEEE Access; 2020; 8():115041-115050. PubMed ID: 32742893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.
    Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT
    J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble Technique Coupled with Deep Transfer Learning Framework for Automatic Detection of Tuberculosis from Chest X-ray Radiographs.
    Kotei E; Thirunavukarasu R
    Healthcare (Basel); 2022 Nov; 10(11):. PubMed ID: 36421659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases.
    Yang F; Lu PX; Deng M; Wáng YXJ; Rajaraman S; Xue Z; Folio LR; Antani SK; Jaeger S
    Data (Basel); 2022 Jul; 7(7):. PubMed ID: 36381384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing.
    Chen S; Zhong S; Yao L; Shang Y; Suzuki K
    Phys Med Biol; 2016 Mar; 61(6):2283-301. PubMed ID: 26930386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning.
    Cho K; Kim KD; Nam Y; Jeong J; Kim J; Choi C; Lee S; Lee JS; Woo S; Hong GS; Seo JB; Kim N
    J Digit Imaging; 2023 Jun; 36(3):902-910. PubMed ID: 36702988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution.
    Zarshenas A; Liu J; Forti P; Suzuki K
    Med Phys; 2019 May; 46(5):2232-2242. PubMed ID: 30848498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COVID-19 classification of X-ray images using deep neural networks.
    Keidar D; Yaron D; Goldstein E; Shachar Y; Blass A; Charbinsky L; Aharony I; Lifshitz L; Lumelsky D; Neeman Z; Mizrachi M; Hajouj M; Eizenbach N; Sela E; Weiss CS; Levin P; Benjaminov O; Bachar GN; Tamir S; Rapson Y; Suhami D; Atar E; Dror AA; Bogot NR; Grubstein A; Shabshin N; Elyada YM; Eldar YC
    Eur Radiol; 2021 Dec; 31(12):9654-9663. PubMed ID: 34052882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.