BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34067115)

  • 1. Design and Optimization of the Resonator in a Resonant Accelerometer Based on Mode and Frequency Analysis.
    Li Y; Jin B; Zhao M; Yang F
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.
    Yang B; Wang X; Dai B; Liu X
    Sensors (Basel); 2015 Jan; 15(1):687-702. PubMed ID: 25569748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Design and Optimization of a Resonant Micro-Accelerometer Based on Electrostatic Stiffness by an Improved Differential Evolution Algorithm.
    Huang L; Li Q; Qin Y; Ding X; Zhang M; Zhao L
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Vibration Study Based on Uncertainty Analysis in MEMS Resonant Accelerometer.
    Li Y; Song L; Liang S; Xiao Y; Yang F
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Two-Axis Differential Resonant Accelerometer Based on Graphene with Transmission Beams.
    Xiao Y; Hu F; Zhang Y; Zheng J; Qin S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Input-Output-Improved Reservoir Computing Based on Duffing Resonator Processing Dynamic Temperature Compensation for MEMS Resonant Accelerometer.
    Guo X; Yang W; Zheng T; Sun J; Xiong X; Wang Z; Zou X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matching the Optimal Operating Mode of Polydimethylsiloxane Check Valves by Tuning the Resonant Frequency of the Resonator in a Piezoelectric Pump for Improved Output Performance.
    Chen J; Meng F; Feng Z; Gao W; Liu C; Zeng Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Theoretical and Empirical Investigation of Design Characteristics in a Pb(Zr,Ti)O
    Lee MK; Han SH; Park JJ; Lee GJ
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32585870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on the Disc Sensitive Structure of a Micro Optoelectromechanical System (MOEMS) Resonator Gyroscope.
    Shen X; Zhao L; Xia D
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31010214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and Optimization of Hemispherical Resonator's Equivalent Bottom Angle for Frequency-Splitting Suppression.
    Gao Z; Wang S; Wang Z; Ding X
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and implementation of a micromechanical silicon resonant accelerometer.
    Huang L; Yang H; Gao Y; Zhao L; Liang J
    Sensors (Basel); 2013 Nov; 13(11):15785-804. PubMed ID: 24256978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift.
    Li B; Zhao Y; Li C; Cheng R; Sun D; Wang S
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity.
    Zhang J; Su Y; Shi Q; Qiu AP
    Sensors (Basel); 2015 Dec; 15(12):30293-310. PubMed ID: 26633425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Design and Testing of a Micromechanical Resonant Accelerometer.
    Liu H; Zhang Y; Wu J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Thermally Induced Packaging Effects on the Frequency Drift of Micro-Electromechanical System Resonant Accelerometer.
    Bie X; Xiong X; Wang Z; Yang W; Li Z; Zou X
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Low-g MEMS Accelerometer with High Sensitivity, Low Nonlinearity and Large Dynamic Range Based on Mode-Localization of 3-DoF Weakly Coupled Resonators.
    Saleem MM; Saghir S; Bukhari SAR; Hamza A; Shakoor RI; Bazaz SA
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Optimization of a Compact Double-Ended-Tuning-Fork-Based Resonant Accelerometer for Smart Spindle Applications.
    Chen YH; Li WC; Xiao XW; Yang CC; Liu CH
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and Analysis of a Novel Ultrasensitive Differential Resonant Graphene Micro-Accelerometer with Wide Measurement Range.
    Shi FT; Fan SC; Li C; Peng XB
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane mode vibration.
    Han X; Mao Q; Zhao L; Li X; Wang L; Yang P; Lu D; Wang Y; Yan X; Wang S; Zhu N; Jiang Z
    Microsyst Nanoeng; 2020; 6():95. PubMed ID: 34567705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The study of the influence of the geometry of a lateral electric field resonator on its resonant characteristics.
    Teplykh A; Zaitsev B; Semyonov A; Borodina I
    Ultrasonics; 2024 Jun; 142():107386. PubMed ID: 38971006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.