These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34067202)

  • 1. Design and Experimental Research of Knee Joint Prosthesis Based on Gait Acquisition Technology.
    Zhang Y; Wang E; Wang M; Liu S; Ge W
    Biomimetics (Basel); 2021 May; 6(2):. PubMed ID: 34067202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
    Sun Y; Ge W; Zheng J; Dong D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1031-8. PubMed ID: 25675463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints.
    Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M
    Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and optimization of a new integrated hip and knee prosthesis structure.
    Luo S; Shu X; Zhu H; Yu H
    Artif Organs; 2024 Jan; 48(1):50-60. PubMed ID: 37877242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization Design and Performance Analysis of a Bionic Knee Joint Based on the Geared Five-Bar Mechanism.
    Wang Z; Ge W; Zhang Y; Liu B; Liu B; Jin S; Li Y
    Bioengineering (Basel); 2023 May; 10(5):. PubMed ID: 37237651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower-limb proprioception in above-knee amputees.
    Eakin CL; Quesada PM; Skinner H
    Clin Orthop Relat Res; 1992 Nov; (284):239-46. PubMed ID: 1395300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
    De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():59-67. PubMed ID: 31704536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial Measuring System to Evaluate Gait Parameters and Dynamic Alignments for Lower-Limb Amputation Subjects.
    Han SL; Cai ML; Pan MC
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint.
    Jiang J; Chen P; Peng J; Qiao X; Zhu F; Zhong J
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37092408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Evaluation of Jaipur Knee Joint through Kinematics and Kinetics Gait Symmetry with Unilateral Transfemoral Indian Amputees.
    Mishra P; Singh S; Ranjan V; Singh S; Vidyarthi A
    J Med Syst; 2019 Jan; 43(3):55. PubMed ID: 30694396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis.
    Lee S; Hong J
    Proc Inst Mech Eng H; 2009 Feb; 223(2):263-71. PubMed ID: 19278201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of vacuum and KBM prosthetic fitting for unilateral transtibial amputees using the Gait Profile Score.
    Kuntze Ferreira AE; Neves EB
    Gait Posture; 2015 Feb; 41(2):683-7. PubMed ID: 25684145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rehabilitation evaluation of the newly developed polymeric based passive polycentric knee joint.
    Arun S; Marbaniang B; Borgohain B; Kanagaraj S
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):871-877. PubMed ID: 31172818
    [No Abstract]   [Full Text] [Related]  

  • 15. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts.
    Schmalz T; Altenburg B; Ernst M; Bellmann M; Rosenbaum D
    Gait Posture; 2019 Feb; 68():161-167. PubMed ID: 30497035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A four-bar knee joint measurement walking system for prosthesis design.
    Zhang Y; Cao W; Yu H; Meng Q; Lv J
    Technol Health Care; 2021; 29(4):823-828. PubMed ID: 33492256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-Mined Continuous Hip-Knee Coordination Mapping With Motion Lag for Lower-Limb Prosthesis Control.
    Lv Y; Xu J; Fang H; Zhang X; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1557-1566. PubMed ID: 35657834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture.
    Huang T; Ruan M; Huang S; Fan L; Wu X
    Front Bioeng Biotechnol; 2024; 12():1280363. PubMed ID: 38532880
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.