These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34067296)
1. A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise. Gong Y; Cui C Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067296 [TBL] [Abstract][Full Text] [Related]
2. Robust Interacting Multiple Model Filter Based on Student's Li D; Sun J Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31698779 [TBL] [Abstract][Full Text] [Related]
3. A Student's t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers. Liu Z; Chen S; Wu H; He R; Hao L Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29617348 [TBL] [Abstract][Full Text] [Related]
4. Strong Tracking PHD Filter Based on Variational Bayesian with Inaccurate Process and Measurement Noise Covariance. Hu Z; Yang L; Jin Y; Wang H; Yang S Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562792 [TBL] [Abstract][Full Text] [Related]
5. An Adaptive Filter for Nonlinear Multi-Sensor Systems with Heavy-Tailed Noise. Dong X; Chisci L; Cai Y Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255987 [TBL] [Abstract][Full Text] [Related]
6. Cubature Information SMC-PHD for Multi-Target Tracking. Liu Z; Wang Z; Xu M Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171088 [TBL] [Abstract][Full Text] [Related]
7. Multi-Target State Extraction for the SMC-PHD Filter. Si W; Wang L; Qu Z Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322274 [TBL] [Abstract][Full Text] [Related]
8. A Robust Interacting Multi-Model Multi-Bernoulli Mixture Filter for Maneuvering Multitarget Tracking under Glint Noise. Yu B; Gu H; Su W Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732826 [TBL] [Abstract][Full Text] [Related]
10. Refined PHD Filter for Multi-Target Tracking under Low Detection Probability. Wang S; Bao Q; Chen Z Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31247971 [TBL] [Abstract][Full Text] [Related]
11. Bayesian Inference for State-Space Models With Student-t Mixture Distributions. Zhang T; Zhao S; Luan X; Liu F IEEE Trans Cybern; 2023 Jul; 53(7):4435-4445. PubMed ID: 35834461 [TBL] [Abstract][Full Text] [Related]
12. Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter. Si W; Wang L; Qu Z Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886106 [TBL] [Abstract][Full Text] [Related]
13. A New Variational Bayesian-Based Kalman Filter with Unknown Time-Varying Measurement Loss Probability and Non-Stationary Heavy-Tailed Measurement Noise. Shan C; Zhou W; Yang Y; Shan H Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682075 [TBL] [Abstract][Full Text] [Related]
14. Scene-Specialized Multitarget Detector with an SMC-PHD Filter and a YOLO Network. Liu Q; Li Y; Dong Q; Ye F Comput Intell Neurosci; 2022; 2022():1010767. PubMed ID: 35528355 [TBL] [Abstract][Full Text] [Related]
15. Design of robust Gaussian approximate filter and smoother with latency probability identification. Jiang Z; Zhou W; Shan C; Zhang Z ISA Trans; 2023 Jun; 137():405-418. PubMed ID: 36759294 [TBL] [Abstract][Full Text] [Related]
16. DOA Tracking Based on Unscented Transform Multi-Bernoulli Filter in Impulse Noise Environment. Wu SY; Zhao J; Dong XD; Xue QT; Cai RH Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540538 [TBL] [Abstract][Full Text] [Related]
17. Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise. Vuković N; Miljković Z Neural Netw; 2015 Mar; 63():31-47. PubMed ID: 25436486 [TBL] [Abstract][Full Text] [Related]
18. Distributed fusion estimation for multisensor systems with non-Gaussian but heavy-tailed noises. Yan L; Di C; Wu QMJ; Xia Y; Liu S ISA Trans; 2020 Jun; 101():160-169. PubMed ID: 32111406 [TBL] [Abstract][Full Text] [Related]
19. FISST based method for multi-target tracking in the image plane of optical sensors. Xu Y; Xu H; An W; Xu D Sensors (Basel); 2012; 12(3):2920-34. PubMed ID: 22736984 [TBL] [Abstract][Full Text] [Related]