These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34068073)

  • 1. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective.
    Ulian G; Moro D; Valdrè G
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34068073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mechanical stress on the Raman and infrared bands of hydroxylapatite: A quantum mechanical first principle investigation.
    Ulian G; Valdrè G
    J Mech Behav Biomed Mater; 2018 Jan; 77():683-692. PubMed ID: 29102893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural protein bioinspired materials for regeneration of hard tissues.
    Xu X; Chen X; Li J
    J Mater Chem B; 2020 Mar; 8(11):2199-2215. PubMed ID: 32091067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces.
    Vaissier Welborn V
    Phys Chem Chem Phys; 2021 Jun; 23(25):13789-13796. PubMed ID: 33942041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules.
    Corno M; Rimola A; Bolis V; Ugliengo P
    Phys Chem Chem Phys; 2010 Jun; 12(24):6309-29. PubMed ID: 20485772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1139-54. PubMed ID: 27120980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional dependence of hydroxyapatite-collagen interactions on mechanics of collagen.
    Katti DR; Pradhan SM; Katti KS
    J Biomech; 2010 Jun; 43(9):1723-30. PubMed ID: 20211470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Raman spectrometry applied to calcified tissue and calcium-phosphorus biomaterials].
    Penel G; Leroy G; Leroy N; Behin P; Langlois JM; Libersa JC; Dupas PH
    Bull Group Int Rech Sci Stomatol Odontol; 2000; 42(2-3):55-63. PubMed ID: 11799728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale hydroxyapatite particles for bone tissue engineering.
    Zhou H; Lee J
    Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface.
    Qin Z; Gautieri A; Nair AK; Inbar H; Buehler MJ
    Langmuir; 2012 Jan; 28(4):1982-92. PubMed ID: 22208454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic apatite nanomaterial: Modified surface phenomena and its role in developing collagen based polymeric bio-composite (Coll-PLGA/HAp) for biological applications.
    Selvaraju S; Ramalingam S; Rao JR
    Colloids Surf B Biointerfaces; 2018 Dec; 172():734-742. PubMed ID: 30248644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of collagen mineralization in hard tissue formation.
    Wiesmann HP; Meyer U; Plate U; Höhling HJ
    Int Rev Cytol; 2005; 242():121-56. PubMed ID: 15598468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the interface strength between protein and mineral in biological materials.
    Ji B
    J Biomech; 2008; 41(2):259-66. PubMed ID: 17981285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.
    Wei Q; Wang Y; Li X; Yang M; Chai W; Wang K; zhang Y
    J Mech Behav Biomed Mater; 2016 Apr; 57():190-200. PubMed ID: 26724560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments.
    Hellmich Ch; Ulm FJ
    J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on structural features and characteristics of biological apatite crystals. 7. Observation on lattice imperfection of human tooth and bone crystals II.
    Ichijo T; Yamashita Y; Terashima T
    Bull Tokyo Med Dent Univ; 1993 Dec; 40(4):193-205. PubMed ID: 8275545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications.
    Aizawa M; Matsuura T; Zhuang Z
    Biol Pharm Bull; 2013; 36(11):1654-61. PubMed ID: 24189407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.
    Zahn D; Duchstein P
    PLoS One; 2016; 11(6):e0157241. PubMed ID: 27300748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.