BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34068121)

  • 1. Identification of Transcription Factors and the Regulatory Genes Involved in Triacylglycerol Accumulation in the Unicellular Red Alga
    Takahashi S; Okubo R; Kanesaki Y; Zhou B; Takaya K; Watanabe S; Tanaka K; Imamura S
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34068121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae.
    Fukuda S; Hirasawa E; Takemura T; Takahashi S; Chokshi K; Pancha I; Tanaka K; Imamura S
    Sci Rep; 2018 Aug; 8(1):12410. PubMed ID: 30120352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K
    Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unicellular Red Alga
    Pancha I; Takaya K; Tanaka K; Imamura S
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34203949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.
    Sumiya N; Kawase Y; Hayakawa J; Matsuda M; Nakamura M; Era A; Tanaka K; Kondo A; Hasunuma T; Imamura S; Miyagishima SY
    Plant Cell Physiol; 2015 Oct; 56(10):1962-80. PubMed ID: 26272551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primitive red alga Cyanidioschyzon merolae accumulates storage glucan and triacylglycerol under nitrogen depletion.
    Takusagawa M; Nakajima Y; Saito T; Misumi O
    J Gen Appl Microbiol; 2016 Jul; 62(3):111-7. PubMed ID: 27181396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae.
    Pancha I; Shima H; Higashitani N; Igarashi K; Higashitani A; Tanaka K; Imamura S
    Plant J; 2019 Feb; 97(3):485-499. PubMed ID: 30351485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of triacylglycerol accumulation under nitrogen deprivation in the red alga Cyanidioschyzon merolae.
    Toyoshima M; Mori N; Moriyama T; Misumi O; Sato N
    Microbiology (Reading); 2016 May; 162(5):803-812. PubMed ID: 26925574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in
    Wang X; Dong HP; Wei W; Balamurugan S; Yang WD; Liu JS; Li HY
    Biotechnol Biofuels; 2018; 11():318. PubMed ID: 30479663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of a glycogenin, CmGLG2, enhances floridean starch accumulation in the red alga Cyanidioschyzon merolae.
    Pancha I; Tanaka K; Imamura S
    Plant Signal Behav; 2019; 14(6):1596718. PubMed ID: 30938572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.
    Zienkiewicz K; Du ZY; Ma W; Vollheyde K; Benning C
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1269-1281. PubMed ID: 26883557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced triacylglycerol production in oleaginous microalga Neochloris oleoabundans by co-overexpression of lipogenic genes: Plastidial LPAAT1 and ER-located DGAT2.
    Chungjatupornchai W; Fa-Aroonsawat S
    J Biosci Bioeng; 2021 Feb; 131(2):124-130. PubMed ID: 33069576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.
    Sato N; Moriyama T; Mori N; Toyoshima M
    World J Microbiol Biotechnol; 2017 Apr; 33(4):74. PubMed ID: 28303457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses.
    Misra N; Panda PK; Parida BK; Mishra BK
    Evol Bioinform Online; 2012; 8():545-64. PubMed ID: 23032611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae.
    Fujii G; Imamura S; Era A; Miyagishima SY; Hanaoka M; Tanaka K
    FEMS Microbiol Lett; 2015 May; 362(10):. PubMed ID: 25883111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga
    Mao X; Wu T; Kou Y; Shi Y; Zhang Y; Liu J
    Biotechnol Biofuels; 2019; 12():28. PubMed ID: 30792816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis.
    Nobusawa T; Hori K; Mori H; Kurokawa K; Ohta H
    Plant J; 2017 May; 90(3):547-559. PubMed ID: 28218992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga
    Mori N; Moriyama T; Sato N
    FEBS Open Bio; 2019 Jan; 9(1):114-128. PubMed ID: 30652079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase.
    Chungjatupornchai W; Areerat K; Fa-Aroonsawat S
    Microb Cell Fact; 2019 Mar; 18(1):53. PubMed ID: 30866936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.