These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 34068136)
41. One-step wet-spinning of conducting polymer and cellulose nanofiber composites for fiber-type organic electrochemical transistors. Huang M; Lee S; Jo IY; Park H; Shim BS; Yoon MH Carbohydr Polym; 2024 Jan; 324():121559. PubMed ID: 37985121 [TBL] [Abstract][Full Text] [Related]
42. Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures. Sridhara PK; Masso F; Olsén P; Vilaseca F Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443955 [TBL] [Abstract][Full Text] [Related]
43. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375 [TBL] [Abstract][Full Text] [Related]
44. Change in the Crystallite Orientation of Poly(ethylene oxide)/Cellulose Nanofiber Composite Films. Fukuya MN; Senoo K; Kotera M; Yoshimoto M; Sakata O Biomacromolecules; 2017 Dec; 18(12):4411-4415. PubMed ID: 29172447 [TBL] [Abstract][Full Text] [Related]
45. Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Mokhena TC; Sadiku ER; Mochane MJ; Ray SS; John MJ; Mtibe A Carbohydr Polym; 2021 Dec; 273():118507. PubMed ID: 34560938 [TBL] [Abstract][Full Text] [Related]
46. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. Dominic C D M; Dos Santos Rosa D; Camani PH; Kumar AS; K V N; Begum PMS; Dinakaran D; John E; Baby D; Thomas MM; Joy JM; Parameswaranpillai J; Saeb MR Int J Biol Macromol; 2021 Nov; 191():572-583. PubMed ID: 34582904 [TBL] [Abstract][Full Text] [Related]
47. Preparation and characterization of poly(vinyl pyrrolidone)/cellulose nanofiber/Aloe Vera composites as a biocompatible hydrating facial mask. Zand M; Sepahvand S; Khoshkhat P; Chamani M; Jonoobi M; Ashori A Int J Biol Macromol; 2024 Oct; 277(Pt 1):133846. PubMed ID: 39084980 [TBL] [Abstract][Full Text] [Related]
48. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Zhou C; Wu Q Colloids Surf B Biointerfaces; 2011 May; 84(1):155-62. PubMed ID: 21273050 [TBL] [Abstract][Full Text] [Related]
49. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. Las-Casas B; Arantes V Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346 [TBL] [Abstract][Full Text] [Related]
50. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management. Niu P; Mao H; Lim KH; Wang Q; Wang WJ; Yang X ACS Nano; 2023 Aug; 17(15):14686-14694. PubMed ID: 37459214 [TBL] [Abstract][Full Text] [Related]
51. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions. Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798 [TBL] [Abstract][Full Text] [Related]
52. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels. Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828 [TBL] [Abstract][Full Text] [Related]
53. Influence of Nontoxic Magnetic Cellulose Nanofibers on Chitosan Based Edible Nanocoating: A Candidate for Improved Mechanical, Thermal, Optical, and Texture Properties. Ghosh T; Teramoto Y; Katiyar V J Agric Food Chem; 2019 Apr; 67(15):4289-4299. PubMed ID: 30883112 [TBL] [Abstract][Full Text] [Related]
54. Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State. Yang X; Reid MS; Olsén P; Berglund LA ACS Nano; 2020 Jan; 14(1):724-735. PubMed ID: 31886646 [TBL] [Abstract][Full Text] [Related]
55. High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing. Sridhara PK; Vilaseca F Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066567 [TBL] [Abstract][Full Text] [Related]
56. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Xu X; Liu F; Jiang L; Zhu JY; Haagenson D; Wiesenborn DP ACS Appl Mater Interfaces; 2013 Apr; 5(8):2999-3009. PubMed ID: 23521616 [TBL] [Abstract][Full Text] [Related]
57. Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Zaitun Hasibuan PA; Yuandani ; Tanjung M; Gea S; Pasaribu KM; Harahap M; Perangin-Angin YA; Prayoga A; Ginting JG Heliyon; 2021 Oct; 7(10):e08197. PubMed ID: 34754969 [TBL] [Abstract][Full Text] [Related]
58. Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Song HZ; Luo ZQ; Wang CZ; Hao XF; Gao JG Carbohydr Polym; 2013 Oct; 98(1):161-7. PubMed ID: 23987330 [TBL] [Abstract][Full Text] [Related]
59. Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. Lundahl MJ; Klar V; Ajdary R; Norberg N; Ago M; Cunha AG; Rojas OJ ACS Appl Mater Interfaces; 2018 Aug; 10(32):27287-27296. PubMed ID: 30014693 [TBL] [Abstract][Full Text] [Related]
60. Nondestructive and noncontact evaluation of cellulose nanofiber-reinforced composites using terahertz time-domain spectroscopy. Nakanishi A; Kanno N; Satozono H Sci Rep; 2022 Nov; 12(1):19284. PubMed ID: 36369469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]