These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34068248)

  • 1. Statistical Learning Methods Applicable to Genome-Wide Association Studies on Unbalanced Case-Control Disease Data.
    Dai X; Fu G; Zhao S; Zeng Y
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.
    Zhou W; Nielsen JB; Fritsche LG; Dey R; Gabrielsen ME; Wolford BN; LeFaive J; VandeHaar P; Gagliano SA; Gifford A; Bastarache LA; Wei WQ; Denny JC; Lin M; Hveem K; Kang HM; Abecasis GR; Willer CJ; Lee S
    Nat Genet; 2018 Sep; 50(9):1335-1341. PubMed ID: 30104761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies.
    Xie H; Cao X; Zhang S; Sha Q
    Genet Epidemiol; 2023 Mar; 47(2):185-197. PubMed ID: 36691904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction.
    Tang Y; Liu X; Wang J; Li M; Wang Q; Tian F; Su Z; Pan Y; Liu D; Lipka AE; Buckler ES; Zhang Z
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally efficient whole-genome regression for quantitative and binary traits.
    Mbatchou J; Barnard L; Backman J; Marcketta A; Kosmicki JA; Ziyatdinov A; Benner C; O'Dushlaine C; Barber M; Boutkov B; Habegger L; Ferreira M; Baras A; Reid J; Abecasis G; Maxwell E; Marchini J
    Nat Genet; 2021 Jul; 53(7):1097-1103. PubMed ID: 34017140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACID: Association Correction for Imbalanced Data in GWAS.
    Bao F; Deng Y; Dai Q
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):316-322. PubMed ID: 28113676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS.
    Dey R; Schmidt EM; Abecasis GR; Lee S
    Am J Hum Genet; 2017 Jul; 101(1):37-49. PubMed ID: 28602423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocols, Methods, and Tools for Genome-Wide Association Studies (GWAS) of Dental Traits.
    Agler CS; Shungin D; Ferreira Zandoná AG; Schmadeke P; Basta PV; Luo J; Cantrell J; Pahel TD; Meyer BD; Shaffer JR; Schaefer AS; North KE; Divaris K
    Methods Mol Biol; 2019; 1922():493-509. PubMed ID: 30838596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust meta-analysis of biobank-based genome-wide association studies with unbalanced binary phenotypes.
    Dey R; Nielsen JB; Fritsche LG; Zhou W; Zhu H; Willer CJ; Lee S
    Genet Epidemiol; 2019 Jul; 43(5):462-476. PubMed ID: 30793809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWAS with longitudinal phenotypes: performance of approximate procedures.
    Sikorska K; Montazeri NM; Uitterlinden A; Rivadeneira F; Eilers PH; Lesaffre E
    Eur J Hum Genet; 2015 Oct; 23(10):1384-91. PubMed ID: 25712081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TSLRF: Two-Stage Algorithm Based on Least Angle Regression and Random Forest in genome-wide association studies.
    Sun J; Wu Q; Shen D; Wen Y; Liu F; Gao Y; Ding J; Zhang J
    Sci Rep; 2019 Dec; 9(1):18034. PubMed ID: 31792302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximate Bayesian neural networks in genomic prediction.
    Waldmann P
    Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pipeline design to identify key features and classify the chemotherapy response on lung cancer patients using large-scale genetic data.
    Valdés MG; Galván-Femenía I; Ripoll VR; Duran X; Yokota J; Gavaldà R; Rafael-Palou X; de Cid R
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):97. PubMed ID: 30458782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes.
    Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP
    BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Association Study and Cost-Efficient Genomic Predictions for Growth and Fillet Yield in Nile Tilapia (
    Yoshida GM; Lhorente JP; Correa K; Soto J; Salas D; Yáñez JM
    G3 (Bethesda); 2019 Aug; 9(8):2597-2607. PubMed ID: 31171566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GMStool: GWAS-based marker selection tool for genomic prediction from genomic data.
    Jeong S; Kim JY; Kim N
    Sci Rep; 2020 Nov; 10(1):19653. PubMed ID: 33184432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.
    Bi W; Zhao Z; Dey R; Fritsche LG; Mukherjee B; Lee S
    Am J Hum Genet; 2019 Dec; 105(6):1182-1192. PubMed ID: 31735295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.