BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 34068350)

  • 1. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing.
    Liu L; Lindsay PL; Jackson D
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing in cereal crops: an overview.
    Matres JM; Hilscher J; Datta A; Armario-Nájera V; Baysal C; He W; Huang X; Zhu C; Valizadeh-Kamran R; Trijatmiko KR; Capell T; Christou P; Stoger E; Slamet-Loedin IH
    Transgenic Res; 2021 Aug; 30(4):461-498. PubMed ID: 34263445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops.
    Zhang Y; Shen C; Shi J; Shi J; Zhang D
    J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Editing in Cereals: Approaches, Applications and Challenges.
    Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating GA-Related Genes for Cereal Crop Improvement.
    Cheng J; Hill CB; Shabala S; Li C; Zhou M
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of cereal plant architecture by genome editing to improve yields.
    Huang X; Hilscher J; Stoger E; Christou P; Zhu C
    Plant Cell Rep; 2021 Jun; 40(6):953-978. PubMed ID: 33559722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops.
    Wang C; Yang X; Li G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives.
    Ahmar S; Hensel G; Gruszka D
    Biotechnol Adv; 2023 Dec; 69():108248. PubMed ID: 37666372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing.
    Bekalu ZE; Panting M; Bæksted Holme I; Brinch-Pedersen H
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCT domain-containing genes in cereal crops: flowering time and beyond.
    Liu H; Zhou X; Li Q; Wang L; Xing Y
    Theor Appl Genet; 2020 May; 133(5):1385-1396. PubMed ID: 32006055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops.
    Sakuma S; Salomon B; Komatsuda T
    Plant Cell Physiol; 2011 May; 52(5):738-49. PubMed ID: 21389058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the future cereal crops with big biological data: toward an intelligence-driven breeding by design.
    Liu L; Zhan J; Yan J
    J Genet Genomics; 2024 Mar; ():. PubMed ID: 38531485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize.
    Du Y; Wu B; Xing Y; Zhang Z
    J Adv Res; 2022 Nov; 41():179-190. PubMed ID: 36328747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop.
    DeHaan L; Larson S; López-Marqués RL; Wenkel S; Gao C; Palmgren M
    Trends Plant Sci; 2020 Jun; 25(6):525-537. PubMed ID: 32407693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica.
    Hussin SH; Wang H; Tang S; Zhi H; Tang C; Zhang W; Jia G; Diao X
    Plant Mol Biol; 2021 Mar; 105(4-5):419-434. PubMed ID: 33231834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR enables sustainable cereal production for a greener future.
    Ahmar S; Usman B; Hensel G; Jung KH; Gruszka D
    Trends Plant Sci; 2024 Feb; 29(2):179-195. PubMed ID: 37981496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.