These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 34068350)

  • 21. Genetic control of inflorescence architecture during rice domestication.
    Zhu Z; Tan L; Fu Y; Liu F; Cai H; Xie D; Wu F; Wu J; Matsumoto T; Sun C
    Nat Commun; 2013; 4():2200. PubMed ID: 23884108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Of floral fortune: tinkering with the grain yield potential of cereal crops.
    Sakuma S; Schnurbusch T
    New Phytol; 2020 Mar; 225(5):1873-1882. PubMed ID: 31509613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of inflorescence branch modifications in cereal crops.
    Koppolu R; Chen S; Schnurbusch T
    Curr Opin Plant Biol; 2022 Feb; 65():102168. PubMed ID: 35016076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic Improvement of Cereals and Grain Legumes.
    Nawaz MA; Chung G
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33113769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes.
    Liu L; Gallagher J; Arevalo ED; Chen R; Skopelitis T; Wu Q; Bartlett M; Jackson D
    Nat Plants; 2021 Mar; 7(3):287-294. PubMed ID: 33619356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication.
    Huang Y; Zhao S; Fu Y; Sun H; Ma X; Tan L; Liu F; Sun X; Sun H; Gu P; Xie D; Sun C; Zhu Z
    Plant J; 2018 Nov; 96(4):716-733. PubMed ID: 30101570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development.
    Yamburenko MV; Kieber JJ; Schaller GE
    PLoS One; 2017; 12(4):e0176060. PubMed ID: 28419168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crop reproductive meristems in the genomic era: a brief overview.
    Caselli F; Zanarello F; Kater MM; Battaglia R; Gregis V
    Biochem Soc Trans; 2020 Jun; 48(3):853-865. PubMed ID: 32573650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MADS-box genes and crop domestication: the jack of all traits.
    Schilling S; Pan S; Kennedy A; Melzer R
    J Exp Bot; 2018 Mar; 69(7):1447-1469. PubMed ID: 29474735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing.
    Rodríguez-Leal D; Lemmon ZH; Man J; Bartlett ME; Lippman ZB
    Cell; 2017 Oct; 171(2):470-480.e8. PubMed ID: 28919077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology.
    Anand A; Jones TJ
    Curr Top Microbiol Immunol; 2018; 418():489-507. PubMed ID: 29959543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.
    Fan M; Lal R; Cao J; Qiao L; Su Y; Jiang R; Zhang F
    PLoS One; 2013; 8(9):e74617. PubMed ID: 24058605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat.
    Wang W; Pan Q; Tian B; He F; Chen Y; Bai G; Akhunova A; Trick HN; Akhunov E
    Plant J; 2019 Oct; 100(2):251-264. PubMed ID: 31219637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome editing for plant disease resistance: applications and perspectives.
    Yin K; Qiu JL
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180322. PubMed ID: 30967029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants.
    Gupta PK; Rustgi S; Kumar N
    Genome; 2006 Jun; 49(6):565-71. PubMed ID: 16936836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-based breeding approaches in major vegetable crops.
    Hao N; Han D; Huang K; Du Y; Yang J; Zhang J; Wen C; Wu T
    Theor Appl Genet; 2020 May; 133(5):1739-1752. PubMed ID: 31728564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.