BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 3406838)

  • 1. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.
    Urban JP; McMullin JF
    Spine (Phila Pa 1976); 1988 Feb; 13(2):179-87. PubMed ID: 3406838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intervertebral discs from spinal nondeformity and deformity patients have different mechanical and matrix properties.
    Cheng KK; Berven SH; Hu SS; Lotz JC
    Spine J; 2014 Mar; 14(3):522-30. PubMed ID: 24246750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem.
    Johnstone B; Urban JP; Roberts S; Menage J
    Spine (Phila Pa 1976); 1992 Apr; 17(4):412-6. PubMed ID: 1579875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study.
    Lotz JC; Colliou OK; Chin JR; Duncan NA; Liebenberg E
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2493-506. PubMed ID: 9854748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents.
    Urban JP; McMullin JF
    Biorheology; 1985; 22(2):145-57. PubMed ID: 3986322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure.
    Liu GZ; Ishihara H; Osada R; Kimura T; Tsuji H
    Spine (Phila Pa 1976); 2001 Jan; 26(2):134-41. PubMed ID: 11154531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol, Avon); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression.
    Iatridis JC; Setton LA; Foster RJ; Rawlins BA; Weidenbaum M; Mow VC
    J Biomech; 1998 Jun; 31(6):535-44. PubMed ID: 9755038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae.
    Kurowski P; Kubo A
    Spine (Phila Pa 1976); 1986 Sep; 11(7):726-31. PubMed ID: 3787344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs.
    Nerlich AG; Schleicher ED; Boos N
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2781-95. PubMed ID: 9431614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of swelling pressure and intrafibrillar water in young and aged human intervertebral discs.
    Sivan S; Merkher Y; Wachtel E; Ehrlich S; Maroudas A
    J Orthop Res; 2006 Jun; 24(6):1292-8. PubMed ID: 16649177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs.
    Iatridis JC; MacLean JJ; O'Brien M; Stokes IA
    Spine (Phila Pa 1976); 2007 Jun; 32(14):1493-7. PubMed ID: 17572617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging.
    Johannessen W; Auerbach JD; Wheaton AJ; Kurji A; Borthakur A; Reddy R; Elliott DM
    Spine (Phila Pa 1976); 2006 May; 31(11):1253-7. PubMed ID: 16688040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells.
    Taylor TK; Melrose J; Burkhardt D; Ghosh P; Claes LE; Kettler A; Wilke HJ
    Spine (Phila Pa 1976); 2000 Dec; 25(23):3014-20. PubMed ID: 11145812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression-induced changes in intervertebral disc properties in a rat tail model.
    Iatridis JC; Mente PL; Stokes IA; Aronsson DD; Alini M
    Spine (Phila Pa 1976); 1999 May; 24(10):996-1002. PubMed ID: 10332792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneration and the chemical composition of the human lumbar intervertebral disc.
    Pearce RH; Grimmer BJ; Adams ME
    J Orthop Res; 1987; 5(2):198-205. PubMed ID: 3572589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism.
    McMillan DW; Garbutt G; Adams MA
    Ann Rheum Dis; 1996 Dec; 55(12):880-7. PubMed ID: 9014581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age.
    Shao Z; Rompe G; Schiltenwolf M
    Spine (Phila Pa 1976); 2002 Feb; 27(3):263-8. PubMed ID: 11805689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle.
    Malko JA; Hutton WC; Fajman WA
    Spine (Phila Pa 1976); 1999 May; 24(10):1015-22. PubMed ID: 10332795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.